Monocytes and macrophages are major components of the tumor microenvironment, but their contributions to human cancer are poorly understood. We used molecular profiling combined with functional assays to investigate the role of these cells in human renal cell carcinoma (RCC). Blood monocytes from RCC patients displayed a tumor-promoting transcriptional profile that supported functions like angiogenesis and invasion. Induction of this protumor phenotype required an interleukin-1 receptor (IL-1R)-dependent mechanism. Indeed, targeting of IL-1-IL-1R axis in a human RCC xenograft model abrogated the protumor phenotype of tumor-associated macrophages (TAMs) and reduced tumor growth in vivo. Supporting this, meta-analysis of gene expression from human RCC tumors showed IL1B expression to correlate with myelomonocytic markers, protumor genes, and tumor staging. Analyzing RCC patient tumors confirmed the protumor phenotype of TAMs. These data provide direct evidence for a tumor-promoting role of monocytes and macrophages in human cancer and indicate IL-1-IL-1R as a possible therapeutic target.
Drug−drug interactions (DDIs) occur when a patient's response to the drug is modified by administration or co-exposure to another drug. The main cytochrome P450 (CYP) enzyme, CYP3A4, is implicated in the metabolism of almost all of the tyrosine kinase inhibitors (TKIs). Therefore, there is a substantial potential for interaction between TKIs and other drugs that modulate the activity of this metabolic pathway. Cancer patients are susceptible to DDIs as they receive many medications, either for supportive care or for treatment of toxicity. Differences in DDI outcomes are generally negligible because of the wide therapeutic window of common drugs. However for anticancer agents, serious clinical consequences may occur from small changes in drug metabolism and pharmacokinetics. Therefore, the objective of this review is to highlight the current understanding of DDIs among TKIs, with a focus on metabolism, as well as to identify challenges in the prediction of DDIs and provide recommendations.
Concomitant usage of lapatinib, a cytochrome P450 (CYP) 3A4 substrate and dexamethasone, a CYP3A4 inducer, is a pharmacokinetic drug-drug interaction. This combination may increase the formation of reactive lapatinib metabolites, which is potentially hepatotoxic. This study aims to evaluate the clinical effect of dexamethasone on incidence of hepatotoxicity and to ascertain its in vitro role using a parallel cell culture model experimental setup. Clinical effects of dexamethasone on lapatinib-induced hepatotoxicity were evaluated in a nested case-control study based on 120 patient data obtained from our records. For the in vitro experiment, metabolically competent transforming growth factor α mouse hepatocytes (TAMH) were treated with lapatinib and viabilities were compared in the presence or absence of dexamethasone. After adjusting for confounders, patients receiving the combination were 4.57 times (95% CI 1.23-16.88, p = 0.02) more likely to develop hepatotoxicity and 3.48 times (95% CI 1.24-9.80, p = 0.02) more likely to develop a clinically important change in alanine aminotransferase than compared to the other group. Treatment of TAMH cells with lapatinib and dexamethasone caused a further reduction in viability, as compared to treatment with lapatinib alone. At 5 μM lapatinib, the introduction of dexamethasone 20 μM produced a 59% decline in viability. This is the first study to document a clinically important interaction between lapatinib and dexamethasone, which associates with an increased occurrence of hepatotoxicity. The in vitro findings have provided substantiating evidence and insights on the role of dexamethasone in lapatinib-induced hepatotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.