A conceptually new "light-up" biosensor with a high specificity for d-glucose (Glu) in aqueous media has been developed. The emission from a tetraphenylethene (TPE)-cored diboronic acid (1) was greatly boosted when the fluorogen was oligomerized with Glu because of restriction of the intramolecular rotations of the aryl rotors of TPE by formation of the oligomer. Little change in the light emission was observed when 1 was mixed with D-fructose, D-galactose, or D-mannose, as these saccharides are unable to oligomerize with the fluorogen.
The growing demand for advanced electronics requires dielectrics operating at high temperatures. The development of high-temperature dielectric polymers is reviewed from the perspective of structure design, dielectric and capacitive performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.