In order to analysis the response of aerated flow depth to the VOF model, in this paper, we used VOF combining turbulent model to simulate aerated flow depth in a hydropower station spillway tunnel with high head and large discharge in China. The results show that aerated flow depth is slightly larger than the experiment water depth, but the maximum deviation are not greater than 5% (except the pile number 0+605.236 m). So, using empirical formula to converse the calculate value of water depth into aerated flow depth can make up for the defects of the VOF model which cannot directly get aerated flow depth of the cross section inside the spillway tunnel. But the section water depth can’t be obtained by empirical formula calculation value conversion when cavity exists in the spillway tunnel.
In order to analysis the applicability of VOF and Euler models to simulate water-air two-phase flow, VOF model and Euler model, respectively combining turbulent model, were used to simulate wind speed in ventilation hole of working gate in a hydropower station spillway tunnel with high head and large discharge in China. The results show that the dragging force simulated by Euler model is much more effective than that simulated by VOF model, causing significant increase of airflow in ventilation hole. It is obviously that wind speed simulated by Euler model is more close to the measured one, which may also provide evidence for design of ventilation hole. So Euler model is a better method to simulate the characteristic of aerated flow than VOF model. Meanwhile, the maximum wind speed occur near the inlet of ventilation hole, and the maximum value of wind speed is close to 120 m/s, which can cause loud noise. And wind speed distribution on the inlet section and outlet section of ventilation hole is respectively the most non-uniform and uniform. The conclusions obtained can improve the design of ventilation hole.
VOF model and turbulent model were used in this paper to study on flow characteristic inside a certain spillway tunnel of hydropower station, which includes cross sectional distributions of flow velocity in pressure section and non-pressure section. The results show that flow velocity distribution in the pressure section of the spillway tunnel is basically symmetrical. After turning, flow velocity is well-distributed and move ahead; flow velocity in the right side of non-pressure section in the spillway tunnel is 1m/s faster than that in the left side. When two high-speed water flow come together after passing through the central division pier, flow velocity distributions in the both sides of the spillway tunnel are all uniform. The conclusions obtained can improve the design of the spillway tunnel.
In this paper, we used VOF combining turbulent model to simulate pressure distribution of pressure section and non-pressure section in a hydropower station spillway tunnel with high head and large discharge in China. The results show that in the pressure section of the spillway tunnel, the values of pressure of emergency gate slot, working gate and the pressing slope, getting from physical model experiment and numerical simulation, are all positive. While in the non-pressure section, the No.1、2、3 aerators of the sudden enlargement and sudden drop occur the maximum pressure. And at the back of the No.1、2、3 aerators, where the values of pressure are negative, forms cavity. The conclusions obtained can improve the design of spillway tunnel.
High wind speedandloudnoise usually occur in the hydropower station spillway tunnel, which will impact the producing environment of operators. In this paper, turbulent model and VOF modelwere combinedto simulate wind speed and the volume of ventilated airin ventilation holeandthreeaeratorsin the spillway tunnel on the right bank of a hydropower station in China. The results show thatVOF modelcan well simulate ventilated air induced by water drag, andthe volume of ventilated air in ventilation hole is the largest.Wind speed distribution on the longitudinal sectionof the inlet of ventilation hole is non-uniform,and loud noisewill occurthere. Wind speed on the left side of three aerators is higher than that on the right side. The results of the volume of ventilated airin threeaerators simulated by VOF modelare credible, but we should improve the VOF model to more accurately simulate aerated flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.