Spatio-temporal patterns and processes of genetic differentiation in passively dispersing zooplankton are drawing much attention from both ecologists and evolutionary biologists. Two opposite phylogeographical scenarios have already been demonstrated in rotifers, which consist of high levels of genetic differentiation among populations even on small geographical scales on the one hand and the traditionally known cosmopolitanism that is associated with high levels of gene flow and long-distance dispersal via diapausing stages on the other hand. Here, we analysed the population genetic structure and the phylogeography of the Brachionus calyciflorus species complex in eastern China. By screening a total of 318 individuals from ten locations along a 2320-km gradient and analysing samples from two growing seasons, we aimed at focusing on both small- and large-scale patterns. We identified eight cryptic species and verified species status of two of these by sexual reproduction tests. Samples in summer and winter yielded different cryptic species. The distribution patterns of these genetically distinct cryptic species were diverse across eastern China, from full cosmopolitanism to local endemism. The two most abundant cryptic species BcWIII and BcSW showed a pattern of strong genetic differentiation among populations and no significant isolation by distance. Long-distance colonization, secondary contact and recent range expansion are probably responsible for the indistinct pattern of isolation by distance. Our results suggest that geographical distance is more important than temporal segregation across seasons in explaining population differentiation and the occurrence of cryptic species. We explain the current phylogeographical structure in the B. calyciflorus species complex by a combination of recent population expansion, restricted gene flow, priority effects and long-distance colonization.
Worldwide, there have been few comparative studies on rotifer communities in subtropical lakes. We studied changes in rotifer community structure over 1 year and its relationship to several physicochemical variables in five subtropical shallow lakes in East China, covering a nutrient gradient from mesotrophy to moderate eutrophy. In these lakes, the genera Brachionus, Lecane, and Trichocerca dominated the rotifer species composition, and Polyarthra dolichoptera, Keratella cochlearis, Filinia longiseta, T. pusilla, and Anuraeopsis fissa were the dominant species. With increased nutrient loading, total rotifer abundance and species dominance increased, indicating that rotifer abundance might be a more sensitive indicator of trophic state than species composition. Comparative analyses of the six rotifer community indices calculated in this study and redundancy analysis (RDA) revealed that the two slightly eutrophic lakes and the other two moderately eutrophic lakes exhibited a high degree similarity in community structure. This suggests that the trophic state of a lake determines the rotifer community structure. In contrast, in the two moderately eutrophic lakes, the mass ratios of TN:TP and the contents of TP suggested N-limitation and cyanobacteria dominance in phytoplankton communities might be possible. In these lakes TN played a more important role in shaping the rotifer community according to stepwise multiple regression and RDA. RDA analysis also suggested that rotifer species distribution was strongly associated with trophic state and water temperature, with water temperature being the most important factor in determining seasonality.
To evaluate the relative importance of photosynthetic versus morphological adaptations of submersed macrophytes to low light intensity in lakes, rapid light curves (RLCs), morphological parameters, relative growth rate (RGR), clonal reproduction and abundance of two submersed macrophytes (Potamogeton maackianus and Vallisneria natans) were examined under 2.8%, 7.1%, 17.1% and 39.5% ambient light in a field and outdoor experimental study. The plants increased their initial slope of RLCs (α) and decreased their minimum saturating irradiance (Ek) and maximum relative electron transport rate (ETRm) of RLCs under low light stress, but V. natans was more sensitive in RLCs than P. maackianus. Accordingly, the RGR, plant height and abundance of P. maackianus were higher in the high light regimes (shallow water) but lower in the low light regimes than those of V. natans. At the 2.8% ambient light, V. natans produced ramets and thus fulfilled its population expansion, in contrast to P. maackianus. The results revealed that P. maackianus as a canopy-former mainly elongated its shoot length towards the water surface to compensate for the low light conditions, however, it became limited in severe low light stress conditions. V. natans as a rosette adapted to low light stress mainly through photosynthetic adjustments and superior to severely low light than shoot elongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.