Aims Cardiac hypertrophy is characterized by a shift in metabolic substrate utilization, but the molecular events underlying the metabolic remodelling remain poorly understood. We explored metabolic remodelling and mitochondrial dysfunction in cardiac hypertrophy and investigated the cardioprotective effects of choline. Methods and results The experiments were conducted using a model of ventricular hypertrophy by partially banding the abdominal aorta of Sprague Dawley rats. Cardiomyocyte size and cardiac fibrosis were significantly increased in hypertrophic hearts. In vitro cardiomyocyte hypertrophy was induced by exposing neonatal rat cardiomyocytes to angiotensin II (Ang II) (10−6 M, 24 h). Choline attenuated the mito-nuclear protein imbalance and activated the mitochondrial-unfolded protein response (UPRmt) in the heart, thereby preserving the ultrastructure and function of mitochondria in the context of cardiac hypertrophy. Moreover, choline inhibited myocardial metabolic dysfunction by promoting the expression of proteins involved in ketone body and fatty acid metabolism in response to pressure overload, accompanied by the activation of sirtuin 3/AMP-activated protein kinase (SIRT3-AMPK) signalling. In vitro analyses demonstrated that SIRT3 siRNA diminished choline-mediated activation of ketone body metabolism and UPRmt, as well as inhibition of hypertrophic signals. Intriguingly, serum from choline-treated abdominal aorta banding models (where β-hydroxybutyrate was increased) attenuated Ang II-induced myocyte hypertrophy, which indicates that β-hydroxybutyrate is important for the cardioprotective effects of choline. Conclusion Choline attenuated cardiac dysfunction by modulating the expression of proteins involved in ketone body and fatty acid metabolism, and induction of UPRmt; this was likely mediated by activation of the SIRT3-AMPK pathway. Taken together, these results identify SIRT3-AMPK as a key cardiac transcriptional regulator that helps orchestrate an adaptive metabolic response to cardiac stress. Choline treatment may represent a new therapeutic strategy for optimizing myocardial metabolism in the context of hypertrophy and heart failure.
LE is a safe and feasible technique for the benign or low malignant-potential pancreatic neoplasms. Compared to OE, LE had shorter operating time, lower estimated blood loss, and faster recovery. LE could preserve the pancreatic function as the OE.
The parasympathetic (P) nervous system is thought to contribute significantly to focal atrial fibrillation (AF). Thus we hypothesized that P nerve fibers [and related muscarinic (M(2)) receptors] are preferentially located in the posterior left atrium (PLA) and that selective cholinergic blockade in the PLA can be successfully performed to alter vagal AF substrate. The PLA, pulmonary veins (PVs), and left atrial appendage (LAA) from six dogs were immunostained for sympathetic (S) nerves, P nerves, and M(2) receptors. Epicardial electrophysiological mapping was performed in seven additional dogs. The PLA was the most richly innervated, with nerve bundles containing P and S fibers (0.9 +/- 1, 3.2 +/- 2.5, and 0.17 +/- 0.3/cm(2) in the PV, PLA, and LAA, respectively, P < 0.001); nerve bundles were located in fibrofatty tissue as well as in surrounding myocardium. P fibers predominated over S fibers within bundles (P-to-S ratio = 4.4, 7.2, and 5.8 in PV, PLA, and LAA, respectively). M(2) distribution was also most pronounced in the PLA (17.8 +/- 8.3, 14.3 +/- 7.3, and 14.5 +/- 8 M(2)-stained cells/cm(2) in the PLA, PV, and LAA, respectively, P = 0.012). Left cervical vagal stimulation (VS) caused significant effective refractory period shortening in all regions, with easily inducible AF. Topical application of 1% tropicamide to the PLA significantly attenuated VS-induced effective refractory period shortening in the PLA, PV, and LAA and decreased AF inducibility by 92% (P < 0.001). We conclude that 1) P fibers and M(2) receptors are preferentially located in the PLA, suggesting an important role for this region in creation of vagal AF substrate and 2) targeted P blockade in the PLA is feasible and results in attenuation of vagal responses in the entire left atrium and, consequently, a change in AF substrate.
The PVs and PLA demonstrate unique activation and repolarization characteristics in response to autonomic manipulation. The heterogeneity of vagal responses correlates with the pattern of IKAch distribution in the LA. The peculiar autonomic characteristics of the PVs and PLA might create substrate for re-entry and AF.
Reactive oxygen species (ROS) production is an important mechanism in myocardial ischemia and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is one of major sources of ROS in the heart. Previous studies showed that vagus nerve stimulation (VNS) is beneficial in treating ischemic heart diseases. However, the effect of VNS on ROS production remains elusive. In this study, we investigated the role of VNS onischemia-induced ROS production. Our results demonstrated that VNS alleviated the myocardial injury, attenuated the cardiac dysfunction, reserved the antioxidant enzyme activity and inhibited the formation of ROS as evidenced by the decreased NADPH oxidase (Nox) activity and superoxide fluorescence intensity as well as the expression of p67phox, Rac1 and nitrotyrosine. Furthermore, VNS resulted in the phosphorylation and activation of adenosine monophosphate activated protein kinase (AMPK), which in turn led to an inactivation of Nox by protein kinase C (PKC); however, the phenomena were repressed by the administration of a muscarinic antagonist atropine. Taken together, these data indicate that VNS decreases ROS via AMPK-PKC-Nox pathway; this may have potential importance for the treatment of ischemic heart diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.