It is highly desirable to convert CO2 to valuable fuels or chemicals by means of solar energy, which requires CO2 enrichment around photocatalysts from the atmosphere. Here we demonstrate that a porphyrin-involved metal-organic framework (MOF), PCN-222, can selectively capture and further photoreduce CO2 with high efficiency under visible-light irradiation. Mechanistic information gleaned from ultrafast transient absorption spectroscopy (combined with time-resolved photoluminescence spectroscopy) has elucidated the relationship between the photocatalytic activity and the electron-hole separation efficiency. The presence of a deep electron trap state in PCN-222 effectively inhibits the detrimental, radiative electron-hole recombination. As a direct result, PCN-222 significantly enhances photocatalytic conversion of CO2 into formate anion compared to the corresponding porphyrin ligand itself. This work provides important insights into the design of MOF-based materials for CO2 capture and photoreduction.
We have studied the electronic structure of liquid water using x-ray absorption spectroscopy at the oxygen K edge. Since the x-ray absorption process takes less than a femtosecond, it allows probing of the molecular orbital structure of frozen, local geometries of water molecules at a timescale that has not previously been accessible. Our results indicate that the electronic structure of liquid water is significantly different from that of the solid and gaseous forms, resulting in a pronounced pre-edge feature below the main absorption edge in the spectrum. Theoretical calculations of these spectra suggest that this feature originates from specific configurations of water, for which the H-bond is broken on the H-donating site of the water molecule. This study provides a fingerprint for identifying broken donating H-bonds in the liquid and shows that an unsaturated H-bonding environment exists for a dominating fraction of the water molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.