BackgroundThe Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae.ResultsThe 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid-nutrition feeding.ConclusionsWith the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Telomerase expression is the hallmark of tumor cells, and activation of this ribonucleoprotein complex may be a rate-limiting or critical step in cellular immortalization and oncogenesis. Fungal immunomodulatory protein, FIP-gts, has been isolated from Ganoderma tsugae. In the present study, we expressed and purified the recombinant fungal immunomodulatory protein reFIP-gts in E. coli. We found that reFIP-gts significantly and selectively inhibits the growth of A549 cancer cells while not affecting the growth of normal MRC-5 fibroblasts. The reFIP-gts suppression of telomerase activity is concentration-dependent, due to the downregulation of the telomerase catalytic subunit (hTERT). It also happens at the mRNA level. These results were confirmed by transient transfections of A549 cells with pGL3-Basic plasmid constructs containing the functional hTERT promoter and its E-box-deleted sequences cloned upstream of a luciferase reporter gene. With electrophoretic mobility shift assays and Western blotting, we demonstrated that in response to reFIP-gts, binding of c-myc transcriptional factor to the E-box sequence on the hTERT promoter is inhibited. These results show that reFIP-gts suppresses telomerase activity and inhibits transcriptional regulation of hTERT via a c-myc-responsive element-dependent mechanism. Our findings provide new insight into both the anticancer function of reFIP-gts and the regulation of hTERT/telomerase expression, which may be valuable in the development of a promising chemopreventive agent.
FIP-fve is an immunomodulatory protein isolated from Flammulina velutipes that possesses anti-inflammatory and immunomodulatory activities. However, little is known about its anticancer effects. It is suppressed cell proliferation of A549 lung cancer cells on MTT assay following 48 h treatment of FIP-fve. FIP-fve treatment also resulted in cell cycle arrest but not apoptosis on flow cytometry. This immunomodulatory protein was observed to increase p53 expression, as well as the expression of its downstream gene p21, on Western blot. FIP-fve inhibited migration of A549 cells on wound healing assay and decreased filopodia fiber formation on labeling with Texas Red-X phalloidin. To confirm the effect of FIP-fve on the role of Rac1 in filopodia formation, we investigated the activity of Rac1 in A549 cells following FIP-fve treatment. FIP-fve inhibited EGF-induced activation of Rac1. We demonstrated that FIP-fve decreases RACGAP1 mRNA and protein levels on RT-PCR and Western blot. In addition, the reporter activity of RACGAP1 was reduced by FIP-fve on RacGAP1 promoter assay. Silencing of RacGAP1 decreased cell migration, and overexpression of RacGAP1 increased cell migration in A549 cells. In conclusion, FIP-fve inhibits lung cancer cell migration via RacGAP1 and suppresses the proliferation of A549 via p53 activation pathway.
Matrix metalloproteinase 9 (MMP-9) has been implicated in airway injury in chronic obstructive pulmonary disease (COPD), lung inflammation, and lung cancer and plays a major role in tumor necrosis factor-α (TNF-α)-stimulated tumor invasion and lung inflammation. MMP-9 activity is promoted by the pro-inflammatory cytokine TNF-α. GMI, cloned from Ganoderma microsporum and purified, is one of the recombinant fungal immunomodulatory proteins. To understand the molecular mechanisms involved in the suppression of TNF-α-mediated tumor invasion and inflammation, GMI modulation of this pathway was investigated in human alveolar epithelial A549 cells in this study. GMI exhibited an inhibitory effect on TNF-α-induced invasion, with GMI treatment and TNF-α exposure presenting the most anti-invasive properties on Boyden chamber assay. GMI reduced TNF-α-induced MMP-9 activities on gelatin zymography assay through inhibition of MMP-9 transcriptional activity. RT-PCR and MMP-9 promoter luciferase analysis revealed that GMI inhibits the transcription of MMP-9 mRNA. Moreover, in vitro and in vivo binding experiments, an electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation assay (ChIP) demonstrated that GMI suppresses DNA binding of nuclear factor (NF)-κB transcription factors to MMP-9 promoter. Western blot analysis indicated that GMI blocks the phosphorylation and degradation of IκBα, which in turn leads to suppression of the phosphorylation and nuclear translocation of p65. Thus, overall, our results indicated that GMI mediates antitumor invasion and anti-inflammatory effects through modulation of NF-κB/MMP-9 pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.