The combined effects of succinic anhydride (SA) succinylation and linear dextrin (LD) glycation on whey protein hydrolysates (WPH) and their stabilized emulsions were evaluated. Degree of succinylation (DS), degree of glycation (DG), and degree of browning of samples suggested that a competitive displacement of reactive groups existed when WPH reacted with SA and LD in different orders. Attenuated total reflection Fourier transform infrared (ATR-FTIR) and far-UV circular dichroism (CD) indicated that the order of modification methods had a significant effect on secondary structures of WPH. Succinylation combined with glycation effectively reduced the surface hydrophobicity and increased the molecular flexibility of WPH. Meanwhile, the total free −SH content decreased, and the exposed free −SH content increased. Results of storage stability and gastrointestinal fate of the curcumin-loaded emulsion revealed that the modified WPH with higher DS was more effective for improving the curcumin bioaccessibility, while that with higher DG was more effective for enhancing the stability of the emulsion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.