We propose a novel method for classifying resume data of job applicants into 27 different job categories using convolutional neural networks. Since resume data is costly and hard to obtain due to its sensitive nature, we use domain adaptation. In particular, we train a classifier on a large number of freely available job description snippets and then use it to classify resume data. We empirically verify a reasonable classification performance of our approach despite having only a small amount of labeled resume data available.
Deep neural networks (DNN) have solved many tasks, including image classification, object detection, and semantic segmentation. However, when there are huge parameters and high level of computation associated with a DNN model, it becomes difficult to deploy on mobile devices. To address this difficulty, we propose an efficient compression method that can be split into three parts. First, we propose a cross-layer matrix to extract more features from the teacher's model. Second, we adopt Kullback Leibler (KL) Divergence in an offline environment to make the student model find a wider robust minimum. Finally, we propose the offline ensemble pre-trained teachers to teach a student model. To address dimension mismatch between teacher and student models, we adopt a $1\times 1$ convolution and two-stage knowledge distillation to release this constraint. We conducted experiments with VGG and ResNet models, using the CIFAR-100 dataset. With VGG-11 as the teacher's model and VGG-6 as the student's model, experimental results showed that the Top-1 accuracy increased by 3.57% with a $2.08\times$ compression rate and 3.5x computation rate. With ResNet-32 as the teacher's model and ResNet-8 as the student's model, experimental results showed that Top-1 accuracy increased by 4.38% with a $6.11\times$ compression rate and $5.27\times$ computation rate. In addition, we conducted experiments using the ImageNet $64\times 64$ dataset. With MobileNet-16 as the teacher's model and MobileNet-9 as the student's model, experimental results showed that the Top-1 accuracy increased by 3.98% with a $1.59\times$ compression rate and $2.05\times$ computation rate.
The notorious incident of sudden infant death syndrome (SIDS) can easily happen to a newborn due to many environmental factors. To prevent such tragic incidents from happening, we propose a multi-task deep learning framework that detects different facial traits and two life-threatening indicators, i.e. which facial parts are occluded or covered, by analyzing the infant head image. Furthermore, we extend and adapt the recently developed models that capture data-dependent uncertainty from noisy observations for our application. The experimental results show significant improvements on YunInfants dataset across most of the tasks over the models that simply adopt the regular cross-entropy losses without addressing the effect of the underlying uncertainties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.