'Cleopatra' tangerine (Citrus reshni Hort. ex Tanaka) seedlings were irrigated daily for 8 weeks with 1/4 strength Hoagland's nutrient solution containing 0 (control) or 2 mM aluminum (Al). Leaves from Al-treated plants had decreased CO2 assimilation and stomatal conductance, but increased intercellular CO2 concentrations compared with control leaves. On a leaf area basis, 2 mM Al increased activities of key enzymes in the Calvin cycle, including ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoribulokinase (PRK), stromal fructose-1,6-bisphosphatase (FBPase), and a key enzyme in starch synthesis, ADP-glucose pyrophosphorylase (AGPase), compared with control leaves. Aluminum had no effect on cytosolic FBPase activity, but it decreased sucrose phosphate synthase (SPS) activity. Aluminum had no effect on area-based concentrations of carbohydrates, glucose-6-phosphate (G6P) and fructose 6-phosphate (F6P) or the G6P:F6P ratio, but it decreased the area-based concentration of 3-phosphoglycerate (PGA). Photochemical quenching coefficient (qP) and electron transport rate through PSII were greatly reduced by Al. Non-photochemical quenching coefficient (NPQ) was less affected by Al than qP and electron transport rate through PSII. We conclude that the reduced rate of CO2 assimilation in Al-treated leaves was probably caused by a combination of factors such as reduced electron transport rate through PSII, increased closure of PSII reaction centers and increased photorespiration.
Background and Aims Under high photon flux, excitation energy may be in excess in aluminum (Al)-treated leaves, which use a smaller fraction of the absorbed light in electron transport due to decreased CO 2 assimilation compared with normal leaves. The objectives of this study were to test the hypothesis that the antioxidant systems are up-regulated in Al-treated citrus leaves and correlate with protection from photoxidative damage, and to test whether xanthophyll cycle-dependent thermal energy dissipation is involved in dissipating excess excitation energy.Methods 'Cleopatra' tangerine seedlings were fertilized and irrigated daily for 8 weeks with quarter-strength Hoagland's nutrient solution containing Al at a concentration of 0 or 2 mM from Al 2 (SO 4 ) 3 .18H 2 O. Thereafter, leaf absorptance, chlorophyll (Chl) fluorescence, Al, pigments, antioxidant enzymes and metabolites were measured on fully expanded leaves.Key Results Compared with control leaves, energy was in excess in Al-treated leaves, which had smaller thermal energy dissipation, indicated by non-photochemical quenching (NPQ). In contrast, conversion of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) at midday increased in both treatments, but especially in Al-treated leaves, although A + Z accounted for less 40 % of the total xanthophyll cycle pool in them. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and concentrations of ascorbate (AsA), dehydroascorbate (DASA), reduced glutathione (GSH) and oxidized glutathione (GSSG) were higher in Al-treated than in control leaves.Conclusions These results corroborate the hypothesis that, compared with control leaves, antioxidant systems are up-regulated in Al-treated citrus leaves and protect from photoxidative damage, whereas thermal energy dissipation was decreased. Thus, antioxidant systems are more important than thermal energy dissipation in dissipating excess excitation energy in Al-treated citrus leaves.
Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.
BackgroundMagnesium (Mg)-deficiency is frequently observed in Citrus plantations and is responsible for the loss of productivity and poor fruit quality. Knowledge on the effects of Mg-deficiency on upstream targets is scarce. Seedlings of ‘Xuegan’ [Citrus sinensis (L.) Osbeck] were irrigated with Mg-deficient (0 mM MgSO4) or Mg-sufficient (1 mM MgSO4) nutrient solution for 16 weeks. Thereafter, we first investigated the proteomic responses of C. sinensis roots and leaves to Mg-deficiency using two-dimensional electrophoresis (2-DE) in order to (a) enrich our understanding of the molecular mechanisms of plants to deal with Mg-deficiency and (b) understand the molecular mechanisms by which Mg-deficiency lead to a decrease in photosynthesis.ResultsFifty-nine upregulated and 31 downregulated protein spots were isolated in Mg-deficient leaves, while only 19 upregulated and 12 downregulated protein spots in Mg-deficient roots. Many Mg-deficiency-responsive proteins were involved in carbohydrate and energy metabolism, followed by protein metabolism, stress responses, nucleic acid metabolism, cell wall and cytoskeleton metabolism, lipid metabolism and cell transport. The larger changes in leaf proteome versus root one in response to Mg-deficiency was further supported by our observation that total soluble protein concentration was decreased by Mg-deficiency in leaves, but unaffected in roots. Mg-deficiency had decreased levels of proteins [i.e. ribulose-1,5-bisphosphate carboxylase (Rubisco), rubisco activase, oxygen evolving enhancer protein 1, photosynthetic electron transfer-like protein, ferredoxin-NADP reductase (FNR), aldolase] involved in photosynthesis, thus decreasing leaf photosynthesis. To cope with Mg-deficiency, C. sinensis leaves and roots might respond adaptively to Mg-deficiency through: improving leaf respiration and lowering root respiration, but increasing (decreasing) the levels of proteins related to ATP synthase in roots (leaves); enhancing the levels of proteins involved in reactive oxygen species (ROS) scavenging and other stress-responsive proteins; accelerating proteolytic cleavage of proteins by proteases, protein transport and amino acid metabolism; and upregulating the levels of proteins involved in cell wall and cytoskeleton metabolism.ConclusionsOur results demonstrated that proteomics were more affected by long-term Mg-deficiency in leaves than in roots, and that the adaptive responses differed between roots and leaves when exposed to long-term Mg-deficiency. Mg-deficiency decreased the levels of many proteins involved in photosynthesis, thus decreasing leaf photosynthesis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1462-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.