Quantum dots (QDs) have been applied to a wide range of biological studies by taking advantage of their fluorescence properties. There is almost no method to trace small molecules including medicine. Here, we used QDs for fluorescent tracers for medicine and analyzed their kinetics and dynamics. We conjugated QDs with captopril, anti-hypertensive medicine, by an exchange reaction while retaining the medicinal properties. We investigated the medicinal effect of QD-conjugated captopril (QD-cap) in vitro and in vivo. We also evaluated the concentration and the distribution of the QD-cap in the blood and the organs with their fluorescence. We demonstrate that the QD-cap inhibits the activity of ACE in vitro. The QD-cap reduced the blood pressure of hypertensive model rats. The concentration of the QD-cap in the blood was measured by using the standard curve of the fluorescence intensity. The blood concentration of the QD-cap decrease exponentially and QD-cap has approximately the same half-life as that of captopril. In addition, the fluorescence of the QDs revealed that QD-cap accumulates in the liver, lungs, and spleen. We succeeded in analyzing the dynamics and kinetics of small molecules using fluorescence of QDs.
Background and Purpose— oxLDL (oxidized low-density lipoprotein) has been known for its potential to induce endothelial dysfunction and used as a major serological marker of oxidative stress. Recently, LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1), a lectin-like receptor for oxLDL, has attracted attention in studies of neuronal apoptosis and stroke. We aim to investigate the impact of LOX-1 -deficiency on spontaneous hypertension-related brain damage in the present study. Methods— We generated a LOX-1 deficient strain on the genetic background of stroke-prone spontaneously hypertensive rat (SHRSP), an animal model of severe hypertension and spontaneous stroke. In this new disease model with stroke-proneness, we monitored the occurrence of brain abnormalities with and without salt loading by multiple procedures including T 2 weighted magnetic resonance imaging and also explored circulatory miRNAs as diagnostic biomarkers for cerebral ischemic injury by microarray analysis. Results— Both T 2 weighted magnetic resonance imaging abnormalities and physiological parameter changes could be detected at significantly delayed timing in LOX-1 knockout rats compared with wild-type SHRSP, in either case of normal rat chow and salt loading ( P <0.005 in all instances; n=11–20 for SHRSP and n=13–23 for LOX-1 knockout rats). There were no significant differences in the form of magnetic resonance imaging findings between the strains. A number of miRNAs expressed in the normal rat plasma, including rno-miR-150-5p and rno-miR-320-3p, showed significant changes after spontaneous brain damage in SHRSP, whereas the corresponding changes were modest or almost unnoticeable in LOX-1 knockout rats. There appeared to be the lessening of correlation of postischemic miRNA alterations between the injured brain tissue and plasma in LOX-1 knockout rats. Conclusions— Our data show that deficiency of LOX-1 has a protective effect on spontaneous brain damage in a newly generated LOX-1 -deficient strain of SHRSP. Further, our analysis of miRNAs as biomarkers for ischemic brain damage supports a potential involvement of LOX-1 in blood brain barrier disruption after cerebral ischemia. Visual Overview— An online visual overview is available for this article.
Despite remarkable progress made in human genome-wide association studies, there remains a substantial gap between statistical evidence for genetic associations and functional comprehension of the underlying mechanisms governing these associations. As a means of bridging this gap, we performed genomic analysis of blood pressure (BP) and related phenotypes in spontaneously hypertensive rats (SHR) and their substrain, stroke-prone SHR (SHRSP), both of which are unique genetic models of severe hypertension and cardiovascular complications. By integrating whole-genome sequencing, transcriptome profiling, genome-wide linkage scans (maximum n=1415), fine congenic mapping (maximum n=8704), pharmacological intervention and comparative analysis with transcriptome-wide association study (TWAS) datasets, we searched causal genes and causal pathways for the tested traits. The overall results validated the polygenic architecture of elevated BP compared with a non-hypertensive control strain, Wistar Kyoto rats (WKY); e.g. inter-strain BP differences between SHRSP and WKY could be largely explained by an aggregate of BP changes in seven SHRSP-derived consomic strains. We identified 26 potential target genes, including rat homologs of human TWAS loci, for the tested traits. In this study, we re-discovered 18 genes that had previously been determined to contribute to hypertension or cardiovascular phenotypes. Notably, five of these genes belong to the kallikrein–kinin/renin–angiotensin systems (KKS/RAS), in which the most prominent differential expression between hypertensive and non-hypertensive alleles could be detected in rat Klk1 paralogs. In combination with a pharmacological intervention, we provide in vivo experimental evidence supporting the presence of key disease pathways, such as KKS/RAS, in a rat polygenic hypertension model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.