Fluorescent nanosized carbon dots (Cdots) are an emerging bioimaging agent with excellent chemical inertness and marginal cytotoxicity in comparison to widely used semiconductor quantum dots. In this work, we report the application of Cdots for real time bioimaging of target specific delivery of hyaluronic acid (HA) derivatives. Polyethylene glycol (PEG) diamine-capped Cdots were synthesized by the pyrolysis of citric acid in a hot solvent. The synthesized Cdots showed strong fluorescence under UV excitation with emission properties dependending on the excitation wavelength. HA-Cdot conjugates were synthesized by amide bond formation between amine groups of Cdot and carboxylic groups of HA. After confirmation of the negligible cytotoxicity of Cdots and HA-Cdot conjugates, in vitro bioimaging was carried out for target specific intracellular delivery of the HA-Cdot conjugates by HA receptor-mediated endocytosis. Furthermore, in vivo real-time bioimaging of Cdots and HA-Cdot conjugates exhibited the target specific delivery of HA-Cdot conjugates to the liver with abundant HA receptors. Taken together, we could confirm the feasibility of HA derivatives as a target-specific drug delivery carrier for the treatment of liver diseases and Cdots as a promising bioimaging agent.
Optical energy can trigger a variety of photochemical processes useful for therapies. Owing to the shallow penetration of light in tissues, however, the clinical applications of light-activated therapies have been limited. Bioluminescence resonant energy transfer (BRET) may provide a new way of inducing photochemical activation. Here, we show that efficient bioluminescence energy-induced photodynamic therapy (PDT) of macroscopic tumors and metastases in deep tissue. For monolayer cell culture in vitro incubated with Chlorin e6, BRET energy of about 1 nJ per cell generated as strong cytotoxicity as red laser light irradiation at 2.2 mW/cm2 for 180 s. Regional delivery of bioluminescence agents via draining lymphatic vessels killed tumor cells spread to the sentinel and secondary lymph nodes, reduced distant metastases in the lung and improved animal survival. Our results show the promising potential of novel bioluminescence-activated PDT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.