Alkali halide clusters are interesting model systems that can provide information about how crystal properties evolve. To study these properties, a high-resolution atmospheric pressure inlet time-of-flight mass spectrometry (APi-TOF-MS) study of the sequential sodium halides series, Cl − (NaCl) n and Br − (NaBr) m , has been reported, and the viability of the APi-TOF-MS equipped with an electrospray ionization source in determining cluster compositions has been demonstrated. The isotopic patterns were well resolved, as n=4 and 7 were determined to be the magic numbers for Cl − (NaCl) n clusters, which were particularly abundant in the mass spectra. A global minimum search based on density functional theory enabled basin hopping yield the most stable structures for the mentioned series. The structures exhibit several distinct motifs which can be roughly categorized as linear chain, rock salt, and hexagonal ring. This work provides an effective way to discover and elucidate the nonstoichiometry sodium halide clusters. These clusters possess very high vertical detachment energies and are generally called as superhalogens, which play important roles in chemistry because they are widely used in the synthesis of new classes of charge-transfer salts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.