MXenes, a kind of two-dimensional material of early transition metal carbides and carbonitrides, have emerged as a unique class of layered-structured metallic materials with attractive features, as good conductivity comparable to metals, enhanced ionic conductivity, hydrophilic property derived from their hydroxyl or oxygen-terminated surfaces, and mechanical flexibility. With tunable etching methods, the morphology of MXenes can be effectively controlled to form nanoparticles, single layer, or multi-layer nanosheets, which exhibit large specific surface areas and is favorable for enhancing the sensing performance of MXenes based sensors. Moreover, MXenes are available to form composites with other materials facilely. With structure design, MXenes or its composite show enhanced mechanical flexibility and stretchability, which enabled its wide application in the fields of wearable sensors, energy storage, and electromagnetic shielding. In this review, recent progress in MXenes is summarized, focusing on its application in wearable sensors including pressure/strain sensing, biochemical sensing, temperature, and gas sensing. Furthermore, the main challenges and future research are also discussed.
Near-field communication is a new kind of low-cost wireless communication technology developed in recent years, which brings great convenience to daily life activities such as medical care, food quality detection, and commerce. The integration of near-field communication devices and sensors exhibits great potential for these real-world applications by endowing sensors with new features of powerless and wireless signal transferring and conferring near field communication device with sensing function. In this review, we summarize recent progress in near field communication sensors, including the development of materials and device design and their applications in wearable personal healthcare devices. The opportunities and challenges in near-field communication sensors are discussed in the end.
The key to achieve a highly sensitive and specific protein microarray assay is to prevent nonspecific protein adsorption to an "absolute" zero level because any signal amplification method will simultaneously amplify signal and noise. Here, we develop a novel solid supporting material, namely, polymer coated initiator integrated poly(dimethysiloxane) (iPDMS), which was able to achieve such "absolute" zero (i.e., below the detection limit of instrument). The implementation of this iPDMS enables practical and high-quality multiplexed enzyme-linked immunosorbent assay (ELISA) of 11 tumor markers. This iPDMS does not need any blocking steps and only require mild washing conditions. It also uses on an average 8-fold less capture antibodies compared with the mainstream nitrocellulose (NC) film. Besides saving time and materials, iPDMS achieved a limit-of-detection (LOD) as low as 19 pg mL(-1), which is sufficiently low for most current clinical diagnostic applications. We expect to see an immediate impact of this iPDMS on the realization of the great potential of protein microarray in research and practical uses such as large scale and high-throughput screening, clinical diagnosis, inspection, and quarantine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.