A novel nanocomposite electrode based on hierarchical 3D porous MnO2−TiO2 for the application in hydrogen peroxide (H2O2) sensors has been explored. This electrode was fabricated by growing TiO2 cross‐linked nanowires on a commercial fluorine tin oxide (FTO) glass via a hydrothermal process and subsequent deposition of 3D honeycomb‐like MnO2 nanowalls using an electrodeposition method (denoted as 3D MNS‐TNW@FTO). The obtained 3D MNS‐TNW@FTO electrode was characterized by scanning electron microscopy (SEM), Raman spectroscopy, X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). Based on such a unique 3D porous framework and the existence of MnO2, the electrode demonstrates a good performance in the detection of H2O2, with two linear ranges from 9.8 to 125 μM and 125 μM–1.0 mM, a good selectivity of 8.02 μA mM−1 cm−2, and a low detection limit of 4.5 μM. In addition, the simplicity of the developed low‐cost fabrication process provides an efficient method for the mass production of electrocatalytical MnO2−TiO2 nanocomposites on commercial FTO glass for H2O2 sensing applications and can be adapted for other electrochemical sensors for various biochemical targets. It thus is beneficial for the practical usage in bioanalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.