Loss-of-function mutations in the gene encoding G proteincoupled receptor 56 (GPR56) lead to bilateral frontoparietal polymicrogyria (BFPP), an autosomal recessive disorder affecting brain development. The GPR56 receptor is a member of the adhesion-GPCR family characterized by the chimeric composition of a long ectodomain (ECD), a GPCR proteolysis site (GPS), and a sevenpass transmembrane (7TM) moiety. Interestingly, all identified BFPP-associated missense mutations are located within the extracellular region of GPR56 including the ECD, GPS, and the extracellular loops of 7TM. In the present study, a detailed molecular and functional analysis of the wild-type GPR56 and BFPP-associated point mutants shows that individual GPR56 mutants most likely cause BFPP via different combination of multiple mechanisms. These include reduced surface receptor expression, loss of GPS proteolysis, reduced receptor shedding, inability to interact with a novel protein ligand, and differential distribution of the 7TM moiety in lipid rafts. These results provide novel insights into the cellular functions of GPR56 receptor and reveal molecular mechanisms whereby GPR56 mutations induce BFPP.
The importance of the kynurenine pathway in normal immune system function has led to an appreciation of its possible contribution to autoimmune disorders such as rheumatoid arthritis. Indoleamine-2,3-dioxygenase (IDO) activity exerts a protective function, limiting the severity of experimental arthritis, whereas deletion or inhibition exacerbates the symptoms. Other chronic disorder with an inflammatory component, such as atherosclerosis, are also suppressed by IDO activity. It is suggested that this overall anti-inflammatory activity is mediated by a change in the relative production or activity of Th17 and regulatory T cell populations. Kynurenines may play an anti-inflammatory role also in CNS disorders such as Huntington's disease, Alzheimer's disease and multiple sclerosis, in which signs of inflammation and neurodegeneration are involved. The possibility is discussed that in Huntington's disease kynurenines interact with other anti-inflammatory molecules such as Human Lymphocyte Antigen-G which may be relevant in other disorders. Kynurenine involvement may account for the protection afforded to animals with cerebral malaria and trypanosomiasis when they are treated with an inhibitor of kynurenine-3-monoxygenase (KMO). There is some evidence that changes in IL-10 may contribute to this protection and the relationship between kynurenines and IL-10 in arthritis and other inflammatory conditions should be explored. In addition, metabolites of kynurenine downstream of KMO, such as anthranilic acid and 3-hydroxy-anthranilic acid can influence inflammation, and the ratio of these compounds is a valuable biomarker of inflammatory status although the underlying molecular mechanisms of the changes require clarification. Hence it is essential that more effort be expended to identify their sites of action as potential targets for drug development. Finally, we discuss increasing awareness of the epigenetic regulation of IDO, for example by DNA methylation, a phenomenon which may explain differences between individuals in their susceptibility to arthritis and other inflammatory disorders.
fThe adhesion class G protein-coupled receptors (adhesion-GPCRs) play important roles in diverse biological processes ranging from immunoregulation to tissue polarity, angiogenesis, and brain development. These receptors are uniquely modified by selfcatalytic cleavage at a highly conserved GPCR proteolysis site (GPS) dissecting the receptor into an extracellular subunit (␣) and a seven-pass transmembrane subunit () with cellular adhesion and signaling functions, respectively. Using the myeloid cellrestricted EMR2 receptor as a paradigm, we exam the mechanistic relevance of the subunit interaction and demonstrate a critical role for GPS autoproteolysis in mediating receptor signaling and cell activation. Interestingly, two distinct receptor complexes are identified as a result of GPS proteolysis: one consisting of a noncovalent ␣- heterodimer and the other comprising two completely independent receptor subunits which distribute differentially in membrane raft microdomains. Finally, we show that receptor ligation induces subunit translocation and colocalization within lipid rafts, leading to receptor signaling and inflammatory cytokine production by macrophages. Our present data resolve earlier conflicting results and provide a new mechanism of receptor signaling, as well as providing a paradigm for signal transduction within the adhesion-GPCR family.T he adhesion-class G protein-coupled receptors (adhesion-GPCRs) constitute the second largest GPCR subfamily, whose 33 members are expressed restrictedly in cells of the central nervous, immune, and/or reproductive systems (2, 53). Adhesion-GPCRs are uniquely characterized by the chimeric composition of a large extracellular domain (ECD) and a seven-pass transmembrane (7TM) region. While the 7TM region is predicted to transduce cellular signals, the ECD of adhesion-GPCRs contains multiple repeats of protein modules such as the lectin-like, immunoglobulin (Ig)-like, epidermal growth factor (EGF)-like, and cadherinlike motifs known to mediate protein-protein interaction (2, 53). Adhesion-GPCRs are thus thought to possess a dual cellular adhesion and signaling function. Recent studies have revealed many important functions for adhesion-GPCRs: these include development of the brain frontal cortex (34), circulation of cerebrospinal fluid (44), central nervous system (CNS)-restricted angiogenesis and vascularization (1, 10, 21), myelination of Schwann cells (30, 31), Usher syndrome (29, 49), cellular polarity (16, 23), epididymal fluid regulation and male fertility (4, 12), and immune recognition and regulation (11,18,27,47), as well as tumor growth and metastasis (8,17,43,50). However, the molecular mechanisms mediating the biological functions of adhesion-GPCRs remain to be fully characterized.In addition to the large mosaic ECD, the complex pre-and posttranslational modifications that produce multiple receptor isoforms and the lack of defined ligands also present a great challenge in deciphering the molecular mechanisms of adhesion-GPCRs. Of note is the conserved prot...
Regulatory T (Treg) cells expressing the transcription factor Foxp3 play an important role in maintaining immune homeostasis. Chronic inflammation is associated with reduced Foxp3 expression, function, and loss of phenotypic stability. Previous studies have established the importance of TNF receptor 2 (TNFR2) in the generation and/or activation of Treg cells. In this study, we assess the importance of TNFR2 in healthy mice and under inflammatory conditions. Our findings reveal that, in health, TNFR2 is important not only for the generation of Treg cells, but also for regulating their functional activity. We also show that TNFR2 maintains Foxp3 expression in Treg cells by restricting DNA methylation at the Foxp3 promoter. In inflammation, loss of TNFR2 results in increased severity and chronicity of experimental arthritis, reduced total numbers of Treg cells, reduced accumulation of Treg cells in inflamed joints, and loss of inhibitory activity. In addition, we demonstrate that, under inflammatory conditions, loss of TNFR2 causes Treg cells to adopt a proinflammatory Th17-like phenotype. It was concluded that TNFR2 signaling is required to enable Treg cells to promote resolution of inflammation and prevent them from undergoing dedifferentiation. Consequently, TNFR2-specific agonists or TNF1-specific antagonists may be useful in the treatment of autoimmune disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.