Background: Sepsis is a deleterious systemic inflammatory response to infection, and despite advances in treatment, the mortality rate remains high. We hypothesized that plasma metabolism could clarify sepsis in patients complicated by organ dysfunction.Methods: Plasma samples from 31 patients with sepsis and 23 healthy individuals of comparable age, gender, and body mass index (BMI) were collected. Plasma metabolites were detected through gas chromatography-mass spectrometry (GC-MS), and relevant metabolic pathways were predicted using the Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway database. Student's t-test was employed for statistical analysis. In addition, to explore sepsis organ dysfunction, plasma samples of sepsis patients were further analyzed by metabolomics subgroup analysis according to organ dysfunction.Results: A total of 222 metabolites were detected, which included 124 metabolites with statistical significance between the sepsis and control groups. Among these, we found 26 were fatty acids, including 3 branched fatty acids, 10 were saturated fatty acids, and 13 were unsaturated fatty acids that were found in sepsis plasma samples but not in the controls. In addition, 158 metabolic pathways were predicted, 74 of which were significant. Further subgroup analysis identified seven metabolites in acute kidney injury (AKI), three metabolites in acute respiratory distress syndrome (ARDS), seven metabolites in sepsis-induced myocardial dysfunction (SIMD), and four metabolites in acute hepatic ischemia (AHI) that were significantly different. The results showed that the sepsis samples exhibited extensive changes in amino acids, fatty acids, and tricarboxylic acid (TCA)-cycle products. In addition, three metabolic pathways-namely, energy metabolism, amino acid metabolism, and lipid metabolism-were downregulated in sepsis patients. Conclusions:The downregulated energy, amino acid, and lipid metabolism found in our study may serve as a novel clinical marker for the dysregulated internal environment, particularly involving energy metabolism, which results in sepsis.
Purpose. Aspergillus fumigatus, as an opportunistic fungus, has developed a series of escape mechanisms under the host’s immune response to obtain nutrients and promote fungal growth in the hostile environment. The immune escape of pathogens may be through suppressing the inflammatory response mediated by regulatory T cells (Tregs). The aim of this study was to explore whether A. fumigatus influences Gasdermin-D-dependent pyroptosis of the lung by regulating Toll-like receptor 2-mediated regulatory T cell differentiation. Methods. Collect peripheral blood from patients with A. fumigatus. ELISA kits we used to detect the expression levels of IL-1β, IL-6, IL-2R, and IL-10 in the serum and flow cytometry to detect the percentage of CD4+CD25+Foxp3+ Tregs in the patients’ peripheral blood mononuclear cells (PBMCs). The mouse model of A. fumigatus infection was constructed by tracheal instillation. The pathological changes in the lungs of the mice were observed under a microscope. The fungal load in the lung tissue was determined by the plate colony count. ELISA kit was used to detect the lung tissue homogenate proinflammatory cytokines TNF-α, IL-6, CCL2, and VEGF. Q-PCR was used for the detection of the expression of Foxp3 and TLR2 genes in the lung. Western blot was used for the detection of the expression of TLR2, Gasdermin-D (GSDMD), IL-1α, and IL-1β in the lung. Flow cytometry was used to detect splenic CD4+CD25+FOXP3+ Tregs. Using magnetic beads to extract CD4+ T cells from mice spleen, the effects of A. fumigatus conidia or TLR2 inhibitor (C29) to differentiate CD4+ T cells in vitro were tested. Results. The expression of Foxp3 and TLR2 in the lung tissue of mice infected with A. fumigatus increased, and we observed that the proportion of Tregs in both A. fumigatus infection patients and mice was upregulated. After using the CD25 neutralizing antibody, the number of Tregs in the mice spleen was significantly reduced. However, lung damage was reduced and the ability to clear lung fungi was enhanced. We found that the Tregs in TLR 2 − / − mice were significantly reduced and the nonlethal dose of A. fumigatus conidia did not cause severe lung damage in TLR 2 − / − mice. Compared with that of wild-type mice, the fungal burden in the lung of TLR2-deficient mice was reduced and the knockout of TLR2 changed the expression of GSDMD, IL-1α, and IL-1β in A. fumigatus. In in vitro experiments, we found that the inhibition of TLR2 can reduce Treg differentiation. Conclusions. A. fumigatus triggers CD4+CD25+FOXP3+ Treg proliferation and differentiation by activating the TLR2 pathway, which may be a potential mechanism for evading host defenses in A. fumigatus. This effect can modulate GSDMD-dependent pyroptosis and may partly involve TRL2 signaling.
Chorioamnionitis as an infectious disease that could cause sepsis in pregnancy which can be life threatening to both the mother and fetus. It needs early recognition and comprehensive management. In this paper, we report a case of septic shock caused by chorioamnionitis (39-year-old woman, 25 weeks pregnant), who received a successful multidisciplinary treatment (MDT) from gynaecology and obstetrics, critical care medicine, and anesthesiology including antibiotics, fluid resuscitation, intensive care, and an emergency operation. From this case, we discuss clinical features, treatment timing, and methods of critical care for sepsis in pregnant woman.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.