MicroRNAs (miRNAs/miRs) are considered to serve essential roles in podocyte apoptosis, and to be critical in the development of diabetic nephropathy (DN). Activation of the Notch signaling pathway has been demonstrated to serve an important role in DN development; however, its regulatory mechanisms are not fully understood. The present study used a high glucose (HG)-induced in vitro apoptosis model using mouse podocytes. Expression levels of miR-145-5p and its target, Notch1, and other key factors involved in the apoptosis signaling pathway were detected and measured by reverse transcription-quantitative PCR and western blotting. A luciferase reporter assay was performed to elucidate the miRNA-target interactions. The functions of miR-145-5p in apoptosis were detected using flow cytometry and TUNEL staining. The present study demonstrated that in HG conditions, miR-145-5p overexpression inhibited Notch1, Notch intracellular domain, Hes1 and Hey1 expression at the mRNA and protein levels. Notch1 was identified as a direct target of miR-145-5p. Furthermore, cleaved caspase-3, Bcl-2 and Bax levels were reduced significantly by miR-145-5p overexpression. These results indicate that miR-145-5p overexpression inhibited the Notch signaling pathway and podocyte lesions induced by HG. In conclusion, the results of the present study suggested that miR-145-5p may be a regulator of DN. Additionally, miR-145-5p inhibited HG-induced apoptosis by directly targeting Notch1 and dysregulating apoptotic factors, including cleaved caspase-3, Bcl-2 and Bax. The results of the present study provided evidence that miR-145-5p may offer a novel approach for the treatment of DN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.