The MEF2 site is an essential element of muscle enhancers and promoters that is bound by a nuclear activity found, so far, only in muscle and required for tissue-specific transcription. We have cloned a group of transcription factors from human muscle that are responsible for this activity: They are present in muscle-specific DNA-binding complexes, have a target sequence specificity identical to that of the endogenous activity, and are MEF2 site-dependent transcriptional activators. These MEF2 proteins comprise several alternatively spliced isoforms from one gene and a related factor encoded by a second gene. All share a conserved amino-terminal DNA-binding domain that includes the MADS homology. MEF2 transcripts are ubiquitous but accumulate preferentially in skeletal muscle, heart, and brain. Specific alternatively spliced isoforms are restricted to these tissues, correlating exactly with the presence of endogenous MEF2 activity. Furthermore, MEF2 protein is detected only in skeletal and cardiac muscle nuclei and not in myoblast and nonmuscle cells. Thus, post-transcriptional regulation is important in the generation of tissue-specific MEF2 activity. Cardiac and smooth, as well as skeletal, muscles contain functionally saturating levels of MEF2 trans-activating factors that are absent in nonmuscle cells. Moreover, MEF2 is induced in nonmuscle cells by MyoD; however, MEF2 alone is insufficient to produce the full muscle phenotype. Implications for the molecular mechanisms of myogenesis are considered.
All three translation termination codons, or nonsense codons, contain a uridine residue at the first position of the codon1–3. Here, we demonstrate that pseudouridylation [conversion of uridine into pseudouridine (Ψ) 4] of nonsense codons suppresses translation termination both in vitro and in vivo. In vivo targeting of nonsense codons is accomplished by the expression of an H/ACA RNA capable of directing the isomerization of uridine to Ψ within the nonsense codon. Thus, targeted pseudouridylation represents a novel approach for promoting nonsense suppression in vivo. Remarkably, we also show that pseudouridylated nonsense codons code for amino acids with similar properties. Specifically, ΨAA and ΨAG code for serine and threonine, whereas ΨGA codes for tyrosine and phenylalanine, thus suggesting a novel mode of decoding. Our results suggest that RNA modification, as a naturally occurring mechanism, may offer a new way to expand the genetic code.
Among the spliceosomal snRNAs, U2 has the most extensive modifications, including a 5Ј trimethyl guanosine (TMG) cap, ten 2Ј-O-methylated residues and 13 pseudouridines. At short times after injection, cellularly derived (modified) U2 but not synthetic (unmodified) U2 rescues splicing in Xenopus oocytes depleted of endogenous U2 by RNase H targeting. After prolonged reconstitution, synthetic U2 regenerates splicing activity; a correlation between the extent of U2 modification and U2 function in splicing is observed. Moreover, 5-fluorouridine-containing U2 RNA, a potent inhibitor of U2 pseudouridylation, specifically abolishes rescue by synthetic U2, while rescue by cellularly derived U2 is not affected. By creating chimeric U2 molecules in which some sequences are from cellularly derived U2 and others are from in vitro transcribed U2, we demonstrate that the functionally important modifications reside within the 27 nucleotides at the 5Ј end of U2. We further show that 2Ј-O-methylation and pseudouridylation activities reside in the nucleus and that the 5Ј TMG cap is not necessary for internal modification but is crucial for splicing activity. Native gel analysis reveals that unmodified U2 is not incorporated into the spliceosome. Examination of the U2 protein profile and glycerol-gradient analysis argue that U2 modifications directly contribute to conversion of the 12S to the 17S U2 snRNP particle, which is essential for spliceosome assembly.
Pseudouridine is the most abundant posttranscriptionally modified nucleotide in various stable RNAs of all organisms. Pseudouridine is derived from uridine via base-specific isomerization, resulting in an extra hydrogen bond donor that distinguishes it from other nucleotides. In eukaryotes, uridine-to-pseudouridine isomerization is catalyzed primarily by box H/ACA RNPs, ribonucleoproteins that act as pseudouridylases. When introduced into RNA, pseudouridine contributes significantly to RNA-mediated cellular processes. It was recently discovered that pseudouridylation can be induced by stress, suggesting a regulatory role for pseudouridine. It has also been reported that pseudouridine can be artificially introduced into mRNA by box H/ACA RNPs and that such introduction can mediate nonsense-to-sense codon conversion, thus demonstrating a new means of generating coding/protein diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.