The role of aldehyde dehydrogenase 1 (ALDH1) as an ovarian cancer stem cell marker and its clinical significance have rarely been explored. We used an Aldefluor assay to isolate ALDH1-bright (ALDH1(br)) cells from epithelial ovarian cancer cell lines and characterized the properties of the stem cells. ALDH1(br) cells were enriched in ES-2 (1.3%), TOV-21G (1.0%), and CP70 (1.2%) cells. Both ALDH1(br) and ALDH1(low) cells repopulated stem cell heterogeneity, formed spheroids, and grew into tumors in immunocompromised mice, although these processes were more efficient in ALDH1(br) cells. In the ES-2 and CP70 cells, ALDH1(br) cells conferred more chemoresistance, and were more enriched in CD44 (by 1.74-fold and 5.18-fold, respectively) than in CD133 (by 1.39-fold and 1.17-fold, respectively), compared with ALDH1(low) cells. Immunohistochemical staining for ALDH1 on a tissue microarray containing 84 epithelial ovarian cancer samples revealed that patients with higher ALDH1 expression (>50%) had poor overall survival, compared with those with lower ALDH1 (P = 0.004) and yielded an odds ratio of death of 2.43 (95% CI = 1.12 to 5.28) by multivariate analysis. The results did not support ALDH1 alone as an ovarian cancer stem cell marker, but demonstrated that ALDH1 is associated with CD44 expression, chemoresistance, and poor clinical outcome. The use of a combination of ALDH1 with other stem cell markers may help define ovarian cancer stem cells more stringently.
Cathepsins have long been considered as housekeeping molecules. However, specific functions have also been attributed to each of these lysosomal proteases. Squamous cell carcinoma antigen (SCCA) 1, widely expressed in various uterine cervical cells, is an endogenous cathepsin (cat) L inhibitor. In this study, we investigated whether the cat L-SCCA 1 lysosomal pathway and autophagy were involved in resveratrol (RSV)-induced cytotoxicity in cervical cancer cells. RSV induced GFP-LC3 aggregation as well as increased the presence of LC3-II and autophagosomes as was revealed by electron microscopy in cervical cancer cells. Prolonged treatment of RSV induced cytosolic translocation of cytochrome c, caspase 3 activation and apoptotic cell death. This apoptotic effect was abrogated by trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane, an inhibitor of cat B and L, but not by pepstatin A, an inhibitor of cat D. As cervical cancer cells express little cat B, we further studied the role of cat L. RSV induced dissipation of the lysosomal membrane permeability (LMP), leakage and increased cytosolic expression and activity of cat L. Inhibition of cat L by small interference RNA (siRNA) protected cells from RSV-induced cytotoxicity. In contrast, inhibition of SCCA 1 by siRNA promoted RSV-induced cytotoxicity. Inhibition of autophagic response by wortmannin (WT) or asparagine (ASP) resulted in decreased early LC3-II formation, reduced LMP, and abolishment of the increase in RSV-induced cell death. In conclusion, we have identified a new cytotoxic mechanism in which the lysosomal enzyme cat L acts as a death signal integrator in cervical cancer cells. Furthermore, SCCA 1 may play an antiapoptotic role through anti-cat L activity.
A recent hypothesis for cancer chemoresistance posits that cytotoxic survival of a subpopulation of tumor progenitors drives the propagation of recurrent disease, underscoring the need for new therapeutics that target such primitive cells. To discover such novel compounds active against drug-resistant ovarian cancer, we identified a subset of chemoresistant ovarian tumor cells fulfilling current definitions of cancer-initiating cells from cell lines and patient tumors using multiple stemness phenotypes, including the expression of stem cell markers, membrane dye efflux, sphere formation, potent tumorigenicity, and serial tumor propagation. We then subjected such stem-like ovarian tumor-initiating cells (OTIC) to high-throughput drug screening using more than 1,200 clinically approved drugs. Of 61 potential compounds preliminarily identified, more stringent assessments showed that the antihelmintic niclosamide selectively targets OTICs in vitro and in vivo. Gene expression arrays following OTIC treatment revealed niclosamide to disrupt multiple metabolic pathways affecting biogenetics, biogenesis, and redox regulation. These studies support niclosamide as a promising therapy for ovarian cancer and warrant further preclinical and clinical evaluation of this safe, clinically proven drug for the management of this devastating gynecologic malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.