Osteosarcoma (OS) is rare cancer with bimodal age distribution with peaks observed in children and young adults. Typically, OS is treated with pre-surgery neoadjuvant therapy, surgical excision, and post-surgery chemotherapy. However, the efficacy of treatment on disease prognosis and objective response is not currently optimal, often resulting in drug resistance; in turn, highlighting the need to understand mechanisms driving resistance to therapy in OS patients. Using Doxycycline (Dox)-sensitive and resistant variants of OS cells lines KHOS and U2OS, we found that the resistant variants KHOS-DR and U2OS-DR have significantly higher in vitro proliferation. Treating the Dox-sensitive KHOS/U2OS cells with exosomes isolated from KHOS-DR/U2OS-DR made them resistant to treatment with Dox in vitro and in vivo and enhanced tumor growth and progression, while decreasing overall survival. Expression of the long non-coding RNA (lncRNA) ANCR was significantly higher in the KHOS-DR and U2OS-DR variants. SiRNA-mediated knockdown of ANCR decreased in vitro proliferation, while increasing sensitivity to Dox treatment in the KHOS-DR/U2OS-DR cells. Expression of the exosomal lncRNA ANCR was critical for drug resistance and OS tumor progression in xenografts and was correlated to resistance to Adriamycin and overall survival is patients with OS. These results establish lncRNA ANCR as a critical mediator of resistance to therapy in OS patients, highlighting it as a potential therapeutic target in OS patients.
Osteosarcoma (OS) is a malignant bone neoplasm, mostly occurring in pediatric patients. OS is characterized by a highly aggressive and metastatically active tumor. Chemotherapy followed by surgical excision is the treatment of choice but is often associated with both chemoresistance and relapse. Hence, it is important to develop further understanding of OS pathogenesis and identify potential therapeutic targets. Both the signal transducer and activator of transcription 3 (STAT3) and mammalian target of rapamycin (mTOR) have been implicated in OS pathogenesis. Crosstalk between mTOR and STAT3 signaling has been shown to regulate hypoxia‐induced angiogenesis in other diseases. In this study, we determined using OS cell lines if there is a crosstalk between these two pathways and how that impacts sensitivity to treatment with Rapamycin. OS cell lines exhibited differential sensitivity to mTOR inhibitor Rapamycin. Evaluation of phosphorylated STAT3 showed that in Rapamycin‐sensitive 143B cells, the inhibitor decreased phosphorylation of STAT3 at Y705, but not at S727 whereas, in Rapamycin‐resistant U2OS cells, the inhibitor decreased S727 phosphorylation but not Y705. However, knockdown of STAT3 in U2OS cells made them sensitive to Rapamycin. Immunofluorescence (IF) analysis showed that mTOR is constitutively activated in the 143B cells but is suppressed in the U2OS cells, indicating that this might be their reason for being resistant to Rapamycin. Both cell lines were sensitive to treatment with the STAT3 inhibitor Napabucasin (NP). Treatment with NP inhibited STAT3 activation at Y705 and additionally inhibited mTOR activation, indicating crosstalk between STAT3 and mTOR signaling pathways. Rapamycin could effectively prevent lung metastasis in an orthotropic OS mice model using 143B cells. However, Rapamycin could not inhibit lung metastasis in mice injected with U2OS cells. The STAT3 inhibitor NP attenuated lung metastasis with the U2OS cells. Our results thus established yet undefined crosstalk of STAT3 and mTOR signaling pathways in OS and highlight the possibility of using mTOR inhibitors for treatment in patients with OS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.