BackgroundMouse krüppel-like factor 4 (Klf4) is a zinc finger-containing transcription factor required for terminal differentiation of goblet cells in the colon. However, studies using either Klf4−/− mice or mice with conditionally deleted Klf4 in their gastric epithelia showed different results in the role of Klf4 in epithelial cell proliferation. We used zebrafish as a model organism to gain further understanding of the role of Klf4 in the intestinal cell proliferation and differentiation.Methodology/Principal FindingsWe characterized the function of klf4a, a mammalian klf4 homologue by antisense morpholino oligomer knockdown. Zebrafish Klf4a shared high amino acid similarities with human and mouse Klf4. Phylogenetic analysis grouped zebrafish Klf4a together with both human and mouse Klf4 in a branch with high bootstrap value. In zebrafish, we demonstrate that Klf4a represses intestinal cell proliferation based on results of BrdU incorporation, p-Histone 3 immunostaining, and transmission electron microscopy analyses. Decreased PepT1 expression was detected in intestinal bulbs of 80- and 102-hours post fertilization (hpf) klf4a morphants. Significant reduction of alcian blue-stained goblet cell number was identified in intestines of 102- and 120-hpf klf4a morphants. Embryos treated with γ-secretase inhibitor showed increased klf4a expression in the intestine, while decreased klf4a expression and reduction in goblet cell number were observed in embryos injected with Notch intracellular domain (NICD) mRNA. We were able to detect recovery of goblet cell number in 102-hpf embryos that had been co-injected with both klf4a and Notch 1a NICD mRNA.Conclusions/SignificanceThis study provides in vivo evidence showing that zebrafih Klf4a is essential for the repression of intestinal cell proliferation. Zebrafish Klf4a is required for the differentiation of goblet cells and the terminal differentiation of enterocytes. Moreover, the regulation of differentiation of goblet cells in zebrafish intestine by Notch signaling at least partially mediated through Klf4a.
Deregulation of cell cycle leads to cell transformation and cancer development. Here we present profiling the proteome dynamics using 2-DE and constructing the associated functional networks during the cell cycle of human hepatoma cells, Mahlavu. The protein dynamics was validated by hierarchical clustering analysis on the proteome, and by Northern blot assays on the selected 14-3-3 proteins. Of the 2665 protein spots, 201 with variation coefficient of expression dynamics >20% throughout the cell cycle were subjected to analysis. Degree of the global protein dynamics was phase dependent with the greatest in transitional phases of S/G2, G2/M, and G1/S. Concurrence of pathways coordinating cell-cycle progression versus arrest, and/or pathways regulating apoptosis versus antiapoptosis was always identified during the cell cycle, suggesting the existence of counteracting mechanisms for intracellular homeostasis. Data mining of the results suggested that the key transcription factors in G0/G1, G1/S, S, and G2/M were p53 and SP1, c-Myc, c-Myc and p53, and YY1 and c-Jun, respectively. Our findings for the first time provide insights into the regulation of mammalian cell-cycle progression at the proteome level, and grant a model to study disease mechanisms and to discover therapeutic targets for anticancer therapy.
Although human leucocyte antigen (HLA)‐B27 is strongly associated with ankylosing spondylitis (AS), the association of unfolded protein response (UPR) induced by HLA‐B27 misfolding in AS remains controversial. Since dendritic cells (DCs) are crucial in induction of AS in HLA‐B27‐transgenic rats, and plasmacytoid DCs (pDCs) belong to one type of DCs, we here aim to study the relevance of pDCs and UPR in AS. Peripheral pDCs were isolated from 27 HLA‐B27(+) AS patients and 37 controls. The bone marrow (BM) and synovium of inflamed hips from AS patients and controls were obtained. We found a significantly higher frequency of pDCs in the peripheral blood, BM, or inflamed synovium of hips, which is associated with the enhanced expression of pDC trafficking molecules, CCR6 and CCL20 in the synovium of AS patients. Functional analysis further revealed that several inflammatory cytokines, including TNFα, IL‐6, and IL‐23, secreted by pDCs were significantly increased in AS patients as compared with those in controls. Remarkably, protein kinase RNA‐like endoplasmic reticulum kinase (PERK) pathway in UPR was up‐regulated in pDCs of AS patients. Notably, PERK inhibitor treatment significantly inhibited the enhanced cytokine production by pDCs of AS patients. Further, the extent of PERK activation was significantly associated with the increased disease severity of AS patients. Our data uncover the aberrant distribution and function of pDCs in AS patients. The up‐regulated PERK pathway in UPR of pDCs not only contributes to enhanced cytokine production of pDCs, but also is associated with increased disease activity of AS patients.
Backgroundβ-Lapachone has antitumor and wound healing-promoting activities. To address the potential influences of various chemicals on heart development of zebrafish embryos, we previously treated zebrafish embryos with chemicals from a Sigma LOPAC1280™ library and found several chemicals including β-lapachone that affected heart morphogenesis. In this study, we further evaluated the effects of β-lapachone on zebrafish embryonic heart development.MethodsEmbryos were treated with β-lapachone or dimethyl sulfoxide (DMSO) at 24 or 48 hours post fertilization (hpf) for 4 h at 28°C. Heart looping and valve development was analyzed by whole-mount in situ hybridization and histological analysis. For fractional shortening and wall shear stress analyses, AB and Tg (gata1:DsRed) embryos were recorded for their heart pumping and blood cell circulations via time-lapse fluorescence microscopy. Dextran rhodamine dye injection into the tail reticular cells was used to analyze circulation. Reactive oxygen species (ROS) was analyzed by incubating embryos in 5-(and 6-)-chloromethyl-2',7'-dichloro-dihydrofluorescein diacetate (CM-H2DCFDA) and recorded using fluorescence microscopy. o-Dianisidine (ODA) staining and whole mount in situ hybridization were used to analyze erythrocytes. TUNEL assay was used to examine DNA fragmentation.ResultsWe observed a linear arrangement of the ventricle and atrium, bradycardia arrhythmia, reduced fractional shortening, circulation with a few or no erythrocytes, and pericardial edema in β-lapachone-treated 52-hpf embryos. Abnormal expression patterns of cmlc2, nppa, BMP4, versican, and nfatc1, and histological analyses showed defects in heart-looping and valve development of β-lapachone-treated embryos. ROS production was observed in erythrocytes and DNA fragmentation was detected in both erythrocytes and endocardium of β-lapachone-treated embryos. Reduction in wall shear stress was uncovered in β-lapachone-treated embryos. Co-treatment with the NQO1 inhibitor, dicoumarol, or the calcium chelator, BAPTA-AM, rescued the erythrocyte-deficiency in circulation and heart-looping defect phenotypes in β-lapachone-treated embryos. These results suggest that the induction of apoptosis of endocardium and erythrocytes by β-lapachone is mediated through an NQO1- and calcium-dependent pathway.ConclusionsThe novel finding of this study is that β-lapachone affects heart morphogenesis and function through the induction of apoptosis of endocardium and erythrocytes. In addition, this study further demonstrates the importance of endocardium and hemodynamic forces on heart morphogenesis and contractile performance.
The coordinated migration of bilateral cardiomyocytes and the formation of the cardiac cone are essential for heart tube formation. We investigated gene regulatory mechanisms involved in myocardial migration, and regulation of the timing of cardiac cone formation in zebrafish embryos. Through screening of zebrafish treated with ethylnitrosourea, we isolated a mutant with a hypomorphic allele of mil (s1pr2)/edg5, called s1pr2as10 (as10). Mutant embryos with this allele expressed less mil/edg5 mRNA and exhibited cardia bifida prior to 28 hours post-fertilization. Although the bilateral hearts of the mutants gradually fused together, the resulting formation of two atria and one tightly-packed ventricle failed to support normal blood circulation. Interestingly, cardia bifida of s1pr2as10 embryos could be rescued and normal circulation could be restored by incubating the embryos at low temperature (22.5°C). Rescue was also observed in gata5 and bon cardia bifida morphants raised at 22.5°C. The use of DNA microarrays, digital gene expression analyses, loss-of-function, as well as mRNA and protein rescue experiments, revealed that low temperature mitigates cardia bifida by regulating the expression of genes encoding components of the extracellular matrix (fibronectin 1, tenascin-c, tenascin-w). Furthermore, the addition of N-acetyl cysteine (NAC), a reactive oxygen species (ROS) scavenger, significantly decreased the effect of low temperature on mitigating cardia bifida in s1pr2as10 embryos. Our study reveals that temperature coordinates the development of the heart tube and somitogenesis, and that extracellular matrix genes (fibronectin 1, tenascin-c and tenascin-w) are involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.