The effects of crocetin on the cardiac hypertrophy induced by long-term treatment with norepinephrine (NE) in rats have been investigated. The activities of matrix metalloproteinases (MMP-2 and MMP-9) have been assayed by gelatin SDS-PAGE zymography. The expressions of MMP-2 and MMP-9 were detected by RT-PCR. ATPase activity and hydroxyproline contents were measured with a commercial kit. The results show that crocetin blocked the development of left ventricular hypertrophy induced by NE, decreased the level of collagen in myocardium, enhanced both the Na+-K+ ATPase activity in cardiac tissue and the Ca2+-Mg2+ ATPase activity in mitochondria and inhibited significantly the activity of MMP-2 and the expressions of MMP-2 and MMP-9. These results suggest that crocetin may prevent cardiac hypertrophy induced by NE in rats.
Aims/hypothesis Ginsenosides regulate glucose homeostasis. This study investigated the effect of ginsenoside Rg5 (Rg5) on the hepatic glucagon response, focusing on the regulation of metabolism. Methods Mice fed a high-fat diet (HFD) showed increased hepatic glucose production (HGP). We observed the effects of Rg5 on hepatic fatty acid oxidation and glucagon response. The regulation of phosphodiesterase (PDE) 4B by succinate was also investigated in hepatocytes. Results Rg5 inhibited endogenous glucose production in HFD-fed mice. Rg5 reduced cyclic AMP (cAMP) accumulation and inhibited transcriptional regulation of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) by dephosphorylation of the cAMP response element-binding transcription factor in the liver, demonstrating the inhibitory effect on hepatic glucagon response. HFD feeding increased succinate accumulation in the liver due to the reversal of succinate dehydrogenase activation and triggered hypoxiainducible factor-1α (HIF-1α) induction. Succinate prevented cAMP degradation by inactivating PDE4B, thereby increasing cAMP accumulation in response to glucagon. Knockdown of HIF-1α with small interfering RNA diminished the effect of succinate, indicating that HIF-1α was essential for succinate to inactivate PDE4B. Rg5 inhibited succinate accumulation in hepatocytes by combating fatty acid oxidation, and thus reduced cAMP accumulation by blocking succinate/HIF-1α induction. Rg5 reduced HGP as a consequence of the inhibition of the glucagon response. Conclusions/interpretation Succinate acted as a metabolic signal to enhance the hepatic glucagon response. Rg5 reduced hepatic succinate accumulation by combating fatty acid oxidation and attenuated the hepatic glucagon response by suppressing succinate/HIF-1α induction, suggesting that succinate-associated HIF-1α induction in hepatocytes might be a therapeutic target in the treatment of diabetes.
Altered mitochondrial metabolism acts as an initial cause for cardiovascular diseases and metabolic intermediate succinate emerges as a mediator of mitochondrial dysfunction. This work aims to investigate whether or not extracellular succinate accumulation and its targeted G protein-coupled receptor-91 (GPR91) activation induce cardiac injury through mitochondrial impairment. The results showed that extracellular succinate promoted the translocation of dynamin-related protein 1 (Drp1) to mitochondria via protein kinase Cδ (PKCδ) activation, and induced mitochondrial fission factor (MFF) phosphorylation via extracellular signal-regulated kinases-1/2 (ERK1/2) activation in a GPR91-dependent manner. As a result, enhanced localization of MFF and Drp1 in mitochondria promoted mitochondrial fission, leading to mitochondrial dysfunction and cardiomyocyte apoptosis. We further showed that inhibition of succinate release and GPR91 signaling ameliorated oxygen–glucose deprivation-induced injury in cardiomyocytes and isoproterenol-induced myocardial ischemia injury in mice. Taken together, these results showed that in response to cardiac ischemia, succinate release activated GPR91 and induced mitochondrial fission via regulation of PKCδ and ERK1/2 signaling branches. These findings suggest that inhibition of extracellular succinate-mediated GPR91 activation might be a potential therapeutic strategy for protecting cardiomyocytes from ischemic injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.