Self-assembly of 1,3-di(4'-terpyridinyl)arenes by using the labile tpy-Cd(II)-tpy (where tpy = 2,2':6',2''-terpyridine) connectivity afforded access to hexacadmium macrocycles in high yield. These supramolecular assemblies were characterized by traveling wave ion mobility mass spectrometry (TWIM-MS).
New metallomacrocycles composed of 2,2':6',2″-terpyridine (tpy) ligands and Ru(II) or Fe(II) transition metal ions were prepared by stepwise directed assembly and characterized by 2D diffusion NMR spectroscopy (DOSY), electrospray ionization traveling wave ion mobility mass spectrometry (ESI TWIM MS), and molecular modeling. The supramolecular polymers synthesized include a homonuclear all-Ru hexamer as well as heteronuclear hexamer and nonamer with alternating Ru/Ru/Fe metal centers. ESI MS yields several charge states from each supramacromolecule. If ESI is interfaced with TWIM MS, overlapping charge states and the isomeric components of an individual charge state are separated based on their unique drift times through the TWIM region. From experimentally measured drift times, collision cross-sections can be deduced. The collision cross-sections obtained for the synthesized supramacromolecules are in good agreement with those predicted by molecular modeling for macrocyclic structures. Similarly, the hydrodynamic radii of the synthesized complexes derived from 2D DOSY NMR experiments agree excellently with the radii calculated for macrocyclic architectures, confirming the ESI TWIM MS finding. ESI TWIM MS and 2D DOSY NMR spectroscopy provide an alternative approach for the structural analysis of supramolecules that are difficult or impossible to crystallize, such as the large macrocyclic assemblies investigated. ESI TWIM MS will be particularly valuable for the characterization of supramolecular assemblies not available in the quantity or purity required for NMR studies.
Traveling wave ion mobility mass spectrometry (TWIM MS) was combined with gradient tandem mass spectrometry (gMS(2)) to deconvolute and characterize superimposed ions with different charges and shapes formed by electrospray ionization (ESI) of self-assembled, hexameric metallomacrocycles composed of terpyridine-based ligands and Cd(II) ions. ESI conditions were optimized to obtain intact hexameric cation assemblies in a low charge state (2+), in order to minimize overlapping fragments of the same mass-to-charge ratio. With TWIM MS, intact hexameric ions could be separated from remaining fragments and aggregates. Collisional activation of these hexameric ions at varying collision energies (gMS(2)), followed by TWIM separation, was then performed to resolve macrocyclic from linear hexameric species. Because of the different stabilities of these architectures, gMS(2) changes their relative amounts, which can be monitored individually after subsequent ion mobility separation. On the basis of this unique strategy, hexameric cyclic and linear isomers have been successfully resolved and identified. Complementary structural information was gained by the gMS(2) fragmentation pattern of the metallosupramolecules, acquired by collisionally activated dissociation after TWIM dispersion. TWIM MS interfaced with gMS(2) should be particularly valuable for the characterization of a variety of supramolecular polymers, which often contain isomeric architectures that yield overlapping fragments and aggregates upon ESI MS analysis.
Gigantic coordination molecules assembled from a large number of metal ions and organic ligands are structurally and functionally challenging to characterize. Here we show that a heterometallic cluster [Ni36Gd102(OH)132(mmt)18(dmpa)18(H2dmpa)24(CH3COO)84(SO4)18(NO3)18(H2O)30]·Br6(NO3)6·(H2O) x ·(CH3OH) y , (1, x ≈ 130, y ≈ 60), shaped like a “Star of David”, can be synthesized using a “mixed-ligand” and “sulfate-template” strategy. In terms of metal nuclearity number, 1 is the second largest 3d–4f cluster to date. In the solid state, 1 is porous after removing the lattice guests. The N2 adsoption experiment reveals that the BET and Langmuir surface areas are 299.8 and 412.0 cm2 g–1, respectively. CO2 adsorption at 298 K gives the amount of 45 cm3 g–1 for 1. More importantly, 1 is soluble in common organic solvents and exhibits high solution stability revealed by high resolution MALDI-TOF mass spectroscopy, small-angle X-ray scattering (SAXS), and low-dose transmission electron microscopy. The solubility and the potential open metal sites owing to the labile coordinating components prompted us to investigate the photocatalytic properties of 1, which displays high selectivity and efficiency for reduction of CO2 to CO with turnover number and turnover frequency of 29700 and 1.2 s–1, respectively. These values are higher than most catalysts working under the same conditions, presumably due to the strong Ni–CO2 binding effect. In addition, the large percentage of Gd(III) in 1 leads to a large magnetic entropy change (41.3 J·kg–1·K–1) at 2.0 K for ΔH = 7 T.
The self-assembly of Zn(II) ions and bis(terpyridine) (tpy) ligands carrying 120° or 180° angles between their metal binding sites was utilized to prepare metallosupramolecular libraries with the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.