CRISPR/Cas9 is a powerful genome editing system but uncontrolled Cas9 nuclease expression triggers off-target effects and even in vivo immune responses. Inspired by synthetic biology, here we built a synthetic switch that self-regulates Cas9 expression not only in the transcription step by guide RNA-aided self-cleavage of cas9 gene, but also in the translation step by L7Ae:K-turn repression system. We showed that the synthetic switch enabled simultaneous transcriptional and translational repression, hence stringently attenuating the Cas9 expression. The restricted Cas9 expression induced high efficiency on-target indel mutation while minimizing the off-target effects. Furthermore, we unveiled the correlation between Cas9 expression kinetics and on-target/off-target mutagenesis. The synthetic switch conferred detectable Cas9 expression and concomitant high frequency on-target mutagenesis at as early as 6 h, and restricted the Cas9 expression and off-target effects to minimal levels through 72 h. The synthetic switch is compact enough to be incorporated into viral vectors for self-regulation of Cas9 expression, thereby providing a novel ‘hit and run’ strategy for in vivo genome editing.
CRISPR utilizing Cas9 from Streptococcus pyogenes (SpCas9) and CRISPR interference (CRISPRi) employing catalytically inactive SpCas9 (SpdCas9) have gained popularity for
Escherichia coli engineering. To integrate the SpdCas9‐based CRISPRi module using CRISPR while avoiding mutual interference between SpCas9/SpdCas9 and their cognate single‐guide RNA (sgRNA), this study aimed at exploring an alternative Cas nuclease orthogonal to SpCas9. We compared several Cas9 variants from different microorganisms such as
Staphylococcus aureus (SaCas9) and
Streptococcus thermophilius CRISPR1 (St1Cas9) as well as Cas12a derived from
Francisella novicida (FnCas12a). At the commonly used
E. coli model genes
LacZ, we found that SaCas9 and St1Cas9 induced DNA cleavage more effectively than FnCas12a. Both St1Cas9 and SaCas9 were orthogonal to SpCas9 and the induced DNA cleavage promoted the integration of heterologous DNA of up to 10 kb, at which size St1Cas9 was superior to SaCas9 in recombination frequency/accuracy. We harnessed the St1Cas9 system to integrate SpdCas9 and sgRNA arrays for constitutive knockdown of three genes, knock‐in
pyc and knockout
adhE, without compromising the CRISPRi knockdown efficiency. The combination of orthogonal CRISPR/CRISPRi for metabolic engineering enhanced succinate production while inhibiting byproduct formation and may pave a new avenue to
E. coli engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.