Palladium has been recognized as the best anodic, monometallic electrocatalyst for the formic acid oxidation (FAO) reaction in a direct formic acid fuel cell. Here we report a systematic study of FAO on a variety of Pd nanocrystals, including cubes, right bipyramids, octahedra, tetrahedra, decahedra, and icosahedra. These nanocrystals were synthesized with approximately the same size, but different types of facets and twin defects on their surfaces. Our measurements indicate that the Pd nanocrystals enclosed by {1 0 0} facets have higher specific activities than those enclosed by {1 1 1} facets, in agreement with prior observations for Pd single‐crystal substrates. If comparing nanocrystals predominantly enclosed by a specific type of facet, {1 0 0} or {1 1 1}, those with twin defects displayed greatly enhanced FAO activities compared to their single‐crystal counterparts. To rationalize these experimental results, we performed periodic, self‐consistent DFT calculations on model single‐crystal substrates of Pd, representing the active sites present in the nanocrystals used in the experiments. The calculation results suggest that the enhancement of FAO activity on defect regions, represented by Pd(2 1 1) sites, compared to the activity of both Pd(1 0 0) and Pd(1 1 1) surfaces, could be attributed to an increased flux through the HCOO‐mediated pathway rather than the COOH‐mediated pathway on Pd(2 1 1). Since COOH has been identified as a precursor to CO, a site‐poisoning species, a lower coverage of CO at the defect regions will lead to a higher activity for the corresponding nanocrystal catalysts, containing those defect regions.
Exploring durable electrocatalysts with high activity for oxygen evolution reaction (OER) in acidic media is of paramount importance for H2 production via polymer electrolyte membrane electrolyzers, yet it remains urgently challenging. Herein, we report a synergistic strategy of Rh doping and surface oxygen vacancies to precisely regulate unconventional OER reaction path via the Ru–O–Rh active sites of Rh-RuO2, simultaneously boosting intrinsic activity and stability. The stabilized low-valent catalyst exhibits a remarkable performance, with an overpotential of 161 mV at 10 mA cm−2 and activity retention of 99.2% exceeding 700 h at 50 mA cm−2. Quasi in situ/operando characterizations demonstrate the recurrence of reversible oxygen species under working potentials for enhanced activity and durability. It is theoretically revealed that Rh-RuO2 passes through a more optimal reaction path of lattice oxygen mediated mechanism-oxygen vacancy site mechanism induced by the synergistic interaction of defects and Ru–O–Rh active sites with the rate-determining step of *O formation, breaking the barrier limitation (*OOH) of the traditional adsorption evolution mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.