Eukaryotic translation initiation factor 3 subunit I (eIF3I) with transforming capability is often overexpressed in human hepatocellular carcinoma (HCC) but its oncogenic mechanisms remain unknown. We demonstrate that eIF3I is overexpressed in various cancers along with activated Akt1 phosphorylation and kinase activity in an eIF3I dose-dependent manner. A novel eIF3I and Akt1 protein interaction was identified in HCC cell lines and tissues and was required for eIF3I-mediated activation of Akt1 signaling. Expression of either antisense eIF3I or dominant negative Akt1 mutant suppressed eIF3I-mediated Akt1 oncogenic signaling and various other tumorigenic effects. Oncogenic domain mapping of the eIF3I and Akt1 interaction suggested that the C-terminal eIF3I interacted with the Akt1 kinase domain and conferred the majority of oncogenic functions. In addition, eIF3I interaction with Akt1 prevented PP2A dephosphorylation of Akt1 and resulted in constitutively active Akt1 oncogenic signaling. Importantly, concordant expression of endogenous eIF3I and phospho-Akt1 was detected in HCC cell lines and tissues. Treatment of eIF3I overexpressing HCC cells with the Akt1 specific inhibitor API-2 suppressed eIF3I-mediated tumorigenesis in vitro and in vivo. Conclusion: We describe a constitutive Akt1 oncogenic mechanism resulting from interaction of overexpressed eIF3I with Akt1 that prevents PP2A-mediated dephosphorylation. Overexpression of eIF3I in HCC is oncogenic and is a surrogate marker and therapeutic target for treatment with Akt1 inhibitors. (HEPATOLOGY 2013;58:239-250)
This study investigated the protein kinase C (PKC) and matrix metalloproteinase-2 (MMP-2) in the development of deciduomata in pseudo-pregnant and pregnant rats. The results showed that the expression of MMP-2 was significantly increased from day 2 to day 5 in pseudo-pregnancy and from day 7 to day 9 in pregnancy. To further investigate the correlation between MMP-2 and protein kinase C alpha (PKC alpha), the expression of MMP-2 in the 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated organotypic culture of decidual tissue was determined. The results showed that the active form of MMP-2 was significantly increased in the TPA-treated cultures. Moreover, this response was inhibited by the PKC inhibitor H7, the PKC alpha specific inhibitor Gö-6976 and the translation inhibitor cycloheximide, but not by the transcription inhibitor actinomycin D or the replication inhibitor mitomycin C. In addition, TPA also reversed the MMP-2 expression after by progesterone pretreatment in the primary decidual cells. These findings indicate that PKC alpha may play an important role in the regulation of the MMP-2 expression during decidualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.