MicroRNAs (miRNAs) control gene expression through both translational repression and degradation of target messenger RNAs (mRNAs). However, the interplay between these processes and the precise molecular mechanisms involved remain unclear. Here, we show that translational inhibition is the primary event required for mRNA degradation. Translational inhibition depends on miRNAs impairing the function of the eIF4F initiation complex. We define the RNA helicase eIF4A2 as the key factor of eIF4F through which miRNAs function. We uncover a correlation between the presence of miRNA target sites in the 3' untranslated region (3'UTR) of mRNAs and secondary structure in the 5'UTR and show that mRNAs with unstructured 5'UTRs are refractory to miRNA repression. These data support a linear model for miRNA-mediated gene regulation in which translational repression via eIF4A2 is required first, followed by mRNA destabilization.
miRNAs (microRNAs) are short non-coding RNAs that regulate gene expression post-transcriptionally. They generally bind to the 3'-UTR (untranslated region) of their target mRNAs and repress protein production by destabilizing the mRNA and translational silencing. The exact mechanism of miRNA-mediated translational repression is yet to be fully determined, but recent data from our laboratory have shown that the stage of translation which is inhibited by miRNAs is dependent upon the promoter used for transcribing the target mRNA. This review focuses on understanding how miRNA repression is operating in light of these findings and the questions that still remain.
The DNA damage response activates several pathways that stall the cell cycle and allow DNA repair. These consist of the wellcharacterized ATR (Ataxia telangiectasia and Rad-3 related)/ CHK1 and ATM (Ataxia telangiectasia mutated)/CHK2 pathways in addition to a newly identified ATM/ATR/p38MAPK/MK2 checkpoint. Crucial to maintaining the integrity of the genome is the Sphase checkpoint that functions to prevent DNA replication until damaged DNA is repaired. Inappropriate expression of the proto-oncogene c-Myc is known to cause DNA damage. One mechanism by which c-Myc induces DNA damage is through binding directly to components of the prereplicative complex thereby promoting DNA synthesis, resulting in replication-associated DNA damage and checkpoint activation due to inappropriate origin firing. Here we show that following etoposide-induced DNA damage translation of c-Myc is repressed by miR-34c via a highly conserved target-site within the 3 0 UTR. While miR-34c is induced by p53 following DNA damage, we show that in cells lacking p53 this is achieved by an alternative pathway which involves p38 MAPK signalling to MK2. The data presented here suggest that a major physiological target of miR-34c is c-Myc. Inhibition of miR-34c activity prevents S-phase arrest in response to DNA damage leading to increased DNA synthesis, DNA damage, and checkpoint activation in addition to that induced by etoposide alone, which are all reversed by subsequent c-Myc depletion. These data demonstrate that miR34c is a critical regulator of the c-Myc expression following DNA damage acting downstream of p38 MAPK/MK2 and suggest that miR-34c serves to remove c-Myc to prevent inappropriate replication which may otherwise lead to genomic instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.