Accumulating evidence indicates that circular RNAs (circRNAs) are abundant in the human transcriptome. However, their involvement in biological processes, including pluripotency, remains mostly undescribed. We identified a subset of circRNAs that are enriched in undifferentiated human embryonic stem cells (hESCs) and demonstrated that two, circBIRC6 and circCORO1C, are functionally associated with the pluripotent state. Mechanistically, we found that circBIRC6 is enriched in the AGO2 complex and directly interacts with microRNAs, miR-34a, and miR-145, which are known to modulate target genes that maintain pluripotency. Correspondingly, circBIRC6 attenuates the downregulation of these target genes and suppresses hESC differentiation. We further identified hESC-enriched splicing factors (SFs) and demonstrated that circBIRC6 biogenesis in hESCs is promoted by the SF ESRP1, whose expression is controlled by the core pluripotency-associated factors, OCT4 and NANOG. Collectively, our data suggest that circRNA serves as a microRNA “sponge” to regulate the molecular circuitry, which modulates human pluripotency and differentiation.
Human induced pluripotent stem cells (hiPSCs) generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs), as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as “embryonic stem cell-like”, these cells have a distinct gene expression pattern compared to hESCs, making incomplete reprogramming a potential pitfall. It is unclear to what degree the difference in tissue of origin may contribute to these gene expression differences. To answer these important questions, a careful transcriptional profiling analysis is necessary to investigate the exact reprogramming state of hiPSCs, as well as analysis of the impression, if any, of the tissue of origin on the resulting hiPSCs. In this study, we compare the gene profiles of hiPSCs derived from fetal fibroblasts, neonatal fibroblasts, adipose stem cells, and keratinocytes to their corresponding donor cells and hESCs. Our analysis elucidates the overall degree of reprogramming within each hiPSC line, as well as the “distance” between each hiPSC line and its donor cell. We further identify genes that have a similar mode of regulation in hiPSCs and their corresponding donor cells compared to hESCs, allowing us to specify core sets of donor genes that continue to be expressed in each hiPSC line. We report that residual gene expression of the donor cell type contributes significantly to the differences among hiPSCs and hESCs, and adds to the incompleteness in reprogramming. Specifically, our analysis reveals that fetal fibroblast-derived hiPSCs are closer to hESCs, followed by adipose, neonatal fibroblast, and keratinocyte-derived hiPSCs.
NRP1 is a cancer invasion and angiogenesis enhancer. NRP1 expression is an independent predictor of cancer relapse and poor survival in NSCLC patients. NRP1 plays a critical role in tumorigenesis, cancer invasion, and angiogenesis through VEGF, PI3K, and Akt pathways. NRP1 may have potential as a new therapeutic target in NSCLC.
Trop-2, a cell surface glycoprotein, contains both extracellular epidermal growth factor-like and thyroglobulin type-1 repeat domains. Low TROP2 expression was observed in lung adenocarcinoma tissues as compared with their normal counterparts. The lack of expression could be due to either the loss of heterozygosity (LOH) or hypermethylation of the CpG island DNA of TROP2 upstream promoter region as confirmed by bisulphite sequencing and methylation-specific (MS) polymerase chain reaction (PCR). 5-Aza-2′-deoxycytidine treatment on lung cancer cell (CL) lines, CL1-5 and A549, reversed the hypermethylation status and elevated both TROP2 mRNA and protein expression levels. Enforced expression of TROP2 in the lung CL line H1299 reduced AKT as well as ERK activation and suppressed cell proliferation and colony formation. Conversely, silencing TROP2 with shRNA transfection in the less efficiently tumour-forming cell line H322M enhanced AKT activation and increased tumour growth. Trop-2 could attenuate IGF-1R signalling-mediated AKT/β-catenin and ERK activation through a direct binding of IGF1. In conclusion, inactivation of TROP2 due to LOH or by DNA methylation may play an important role in lung cancer tumourigenicity through losing its suppressive effect on IGF-1R signalling and tumour growth.
CLDN1 is a cancer invasion/metastasis suppressor. CLDN1 is also a useful prognostic predictor and potential drug treatment target for patients with lung adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.