Hierarchical morphology-dependent gas-sensing performances have been demonstrated for three-dimensional SnO nanostructures. First, hierarchical SnO nanostructures assembled with ultrathin shuttle-shaped nanosheets have been synthesized via a facile and one-step hydrothermal approach. Due to thermal instability of hierarchical nanosheets, they are gradually shrunk into cone-shaped nanostructures and finally deduced into rod-shaped ones under a thermal treatment. Given the intrinsic advantages of three-dimensional hierarchical nanostructures, their gas-sensing properties have been further explored. The results indicate that their sensing behaviors are greatly related with their hierarchical morphologies. Among the achieved hierarchical morphologies, three-dimensional cone-shaped hierarchical SnO nanostructures display the highest relative response up to about 175 toward 100 ppm of acetone as an example. Furthermore, they also exhibit good sensing responses toward other typical volatile organic compounds (VOCs). Microstructured analyses suggest that these results are mainly ascribed to the formation of more active surface defects and mismatches for the cone-shaped hierarchical nanostructures during the process of thermal recrystallization. Promisingly, this surface-engineering strategy can be extended to prepare other three-dimensional metal oxide hierarchical nanostructures with good gas-sensing performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.