Mimicking soft tissue mechanical properties and the high conductivity required for electrical transmission in the native spinal cord is critical in nerve tissue regeneration scaffold designs. However, fabricating scaffolds of high conductivity, tissue-like mechanical properties, and excellent biocompatibility simultaneously remains a great challenge. Here, a soft, highly conductive, biocompatible conducting polymer hydrogel (CPH) based on a plant-derived polyphenol, tannic acid (TA), cross-linking and doping conducting polypyrrole (PPy) chains is developed to explore its therapeutic efficacy after a spinal cord injury (SCI). The developed hydrogels exhibit an excellent electronic conductivity (0.05–0.18 S/cm) and appropriate mechanical properties (0.3–2.2 kPa), which can be achieved by controlling TA concentration. In vitro, a CPH with a higher conductivity accelerated the differentiation of neural stem cells (NSCs) into neurons while suppressing the development of astrocytes. In vivo, with relatively high conductivity, the CPH can activate endogenous NSC neurogenesis in the lesion area, resulting in significant recovery of locomotor function. Overall, our findings evidence that the CPHs without being combined with any other therapeutic agents have stimulated tissue repair following an SCI and thus have important implications for future biomaterial designs for SCI therapy.
This article describes the fabrication of nanocellulose fibers (NCFs) with different morphologies and surface properties from biomass resources as well as their self-aggregation into lightweight aerogels. By carefully modulating the nanofibrillation process, four types of NCFs could be readily fabricated, including long aggregated nanofiber bundles, long individualized nanofibers with surface C6 -carboxylate groups, short aggregated nanofibers, and short individualized nanofibers with surface sulfate groups. Free-standing lightweight aerogels were obtained from the corresponding aqueous NCF suspensions through freeze-drying. The structure of the aerogels could be controlled by manipulating the type of NCFs and the concentration of their suspensions. A possible mechanism for the self-aggregation of NCFs into two- or three-dimensional aerogel nanostructures was further proposed. Owing to web-like structure, high porosity, and high surface reactivity, the NCF aerogels exhibited high mechanical flexibility and ductility, and excellent properties for water uptake, removal of dye pollutants, and the use as thermal insulation materials. The aerogels also displayed sound-adsorption capability at high frequencies.
Recent improvements in flexible electronics have increased the need to develop flexible and lightweight power sources. However, current flexible electrodes are limited by low capacitance, poor mechanical properties, and lack of cycling stability. In this article, we describe an ionic liquid-processed supramolecular assembly of cellulose and 3,4-ethylenedioxythiophene for the formation of a flexible and conductive cellulose/poly(3,4-ethylenedioxythiophene) PEDOT:poly(styrene sulfonate) (PSS) composite matrix. On this base, multiwalled carbon nanotubes (MWCNTs) were incorporated into the matrix to fabricate an MWCNT-reinforced cellulose/PEDOT:PSS film (MCPP), which exhibited favorable flexibility and conductivity. The MCPP-based electrode displayed comprehensively excellent electrochemical properties, such as a low resistance of 0.45 Ω, a high specific capacitance of 485 F g at 1 A g, and good cycling stability, with a capacity retention of 95% after 2000 cycles at 2 A g. An MCPP-based symmetric solid-state supercapacitor with Ni foam as the current collector and PVA/KOH gel as the electrolyte exhibited a specific capacitance of 380 F g at 0.25 A g and achieved a maximum energy density of 13.2 Wh kg (0.25 A g) with a power density of 0.126 kW kg or an energy density of 4.86 Wh kg at 10 A g, corresponding to a high power density of 4.99 kW kg. Another kind of MCPP-based solid-state supercapacitor without the Ni foam showed excellent flexibility and a high volumetric capacitance of 50.4 F cm at 0.05 A cm. Both the electrodes and the supercapacitors were environmentally stable and could be operated under remarkable deformation or high temperature without damage to their structural integrity or a significant decrease in capacitive performance. Overall, this work provides a strategy for the fabrication of flexible and conductive energy-storage films with ionic liquid-processed cellulose as a medium.
a b s t r a c tIn this study, we established a simple method for evaluating the PCR compatibility of various common materials employed when fabricating microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most cases, adding bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, although they noticeably interacted with the polymerase. We provide a simple method of performing PCR-compatibility testing of materials using inexpensive instrumentation that is common in molecular biology laboratories. Furthermore, our method is direct, being performed under actual PCR conditions with high temperature. Our results provide an overview of materials that are PCR-friendly for fabricating microfluidic devices. The PCR reaction, without any additives, performed best with pyrex glass, and it performed worst with PMMA or acrylic glue materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.