Chemical addressability of viral particles has played a pivotal role in adapting these biogenic macromolecules for various applications ranging from medicine to inorganic catalysis. The consistent multimeric assemblies dictated by its genetic code, facile large scale production, lack of observable toxicity in humans, Cowpea mosaic virus possesses multiple features that are advantageous for the next generation of virus-based nanotechnology. Herein, the chemistry of the viral particles is extended with the use of Cu-free strain-promoted azide-alkyne cycloaddition reaction, or SPAAC reaction. The elimination of Cu, its co-catalyst and reducing agent simplifies the reaction scheme to a more straightforward approach, which can be directly applied to living systems. As a proof of concept, the viral particles modified with the aza-dibenzylcyclooctynes functional groups are utilized to trigger and amplify a weak fluorescent signal (azidocoumarin) in live cell cultures to visualize the non-natural sugars. Future adaptations of this platform may be developed to enhance biosensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.