A new sliding mode observer for a class of nonlinear uncertain systems is proposed in this article. The proposed sliding mode observer works under much less conservative conditions than previous nonlinear unknown input observers. Also, a functional version of the observer is proposed in certain cases where it may not be possible to design an observer capable of estimating the entire state of the system. Index Terms-Nonlinear observer, sliding mode observer, unknown input observer.
We demonstrate herein a facile strategy
to engineer versatile catalytically
active coordination interspace in the same primitive metal–organic
framework (MOF) for variable heterogeneous catalysis. Different functional
ligands can be reversibly inserted into and removed from proto-LIFM-28 individually or successively to bring in single or binary
catalytic sites for specific reactions and switch the parent MOF to
multipurpose catalysts. Alcohol-oxidation, Knoevenagel-condensation,
click, acetal, and Baylis–Hillman reactions are achievable
through simple exchange of a single catalytic spacer, while sequential
or stepwise reactions are designable via selective combination of
two catalytic spacers with different functionalities, thus making proto-LIFM-28 a multivariate MOF for multiuse and economic
catalysis.
High temperature often leads to the failure of grain filling in rice (Oryza sativa) to cause yield loss, while the mechanism is not well elucidated yet. Here, we report that two seed-specific NAM/ATAF/CUC domain transcription factors, ONAC127 and ONAC129, are responsive to heat stress and involved in the grain filling process of rice. ONAC127 and ONAC129 are dominantly expressed in the pericarp and can form a heterodimer during rice grain filling. CRISPR/Cas9 induced mutants and overexpression lines were then generated to investigate the functions of these two transcription factors. Interestingly, both knock-out and overexpression plants showed incomplete grain filling and shrunken grains, which became more severe under heat stress. Transcriptome analysis revealed that ONAC127 and ONAC129 mainly regulate stimulus response and nutrient transport. ChIP-seq analysis identified that the direct targets of ONAC127 and ONAC129 in developing rice seeds include monosaccharide transporter OsMST6, sugar transporter OsSWEET4, calmodulin-like protein OsMSR2 and AP2/ERF factor OsEATB. These results suggest that ONAC127 and ONAC129 may regulate grain filling through affecting sugar transportation and abiotic stress responses. Overall, this study demonstrates a transcriptional regulatory network involving ONAC127 and ONAC129 and coordinating multiple pathways to modulate seed development and heat stress response at rice reproductive stage.
Starch and storage proteins, the primary storage substances of cereal endosperm, are a major source of food for humans. However, the transcriptional regulatory networks of the synthesis and accumulation of storage substances remain largely unknown. Here, we identified a rice endosperm-specific gene, NF-YC12, that encodes a putative nuclear factor-Y transcription factor subunit C. NF-YC12 is expressed in the aleurone layer and starchy endosperm during grain development. Knockout of NF-YC12 significantly decreased grain weight as well as altering starch and protein accumulation and starch granule formation. RNA-sequencing analysis revealed that in the nf-yc12 mutant genes related to starch biosynthesis and the metabolism of energy reserves were enriched in the down-regulated category. In addition, starch and protein contents in seeds differed between NF-YC12-overexpression lines and the wild-type. NF-YC12 was found to interact with NF-YB1. ChIP-qPCR and yeast one-hybrid assays showed that NF-YC12 regulated the rice sucrose transporter OsSUT1 in coordination with NF-YB1 in the aleurone layer. In addition, NF-YC12 was directly bound to the promoters of FLO6 (FLOURY ENDOSPERM6) and OsGS1;3 (glutamine synthetase1) in developing endosperm. This study demonstrates a transcriptional regulatory network involving NF-YC12, which coordinates multiple pathways to regulate endosperm development and the accumulation of storage substances in rice seeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.