The present study investigated the synthesis of mesoporous hollow carbon spheres (MHCS) and magnetic mesoporous hollow carbon spheres with core-shell structures (Fe3O4@MHCS). Two acetylcholinesterase sensors (acetylcholinesterase/mesoporous hollow carbon spheres/glassy carbon electrode (AChE/MHCS/GCE) and acetylcholinesterase/core-shell magnetic mesoporous hollow carbon spheres/glassy carbon electrode (AChE/Fe3O4@MHCS/GCE) based on mesoporous carbon materials were prepared. Under the optimum conditions, using Malathion as the model compound, the developed biosensors showed a wide detection range, low detection limit, good reproducibility, and high stability. The AChE/MHCS/GCE electrochemical sensor response exhibited two good linear ranges at the incubation time of 10 min at the Malathion concentration ranges of 0.01 to 100 ppb and 100 to 600 ppb, with a detection limit of 0.0148 ppb (S/N = 3). The AChE/Fe3O4@MHCS/GCE electrochemical sensor that was operated with an incubation time of 12 min at the malathion concentration ranges between 0.01–50 ppb and 50–600 ppb had a detection limit of 0.0182 ppb (S/N = 3). Moreover, the AChE/MHCS/GCE and AChE/Fe3O4@MHCS/GCE biosensors were effective for the detection of real samples, and were demonstrated to be suitable for the field-testing of organophosphorus pesticide (OP) residues.
Electrochemical immunosensor based on an Ab-HMS materials using butterfly wings as biotemplate is successfully prepared. It is not only simple to manufacture, but also has a fast detection time and can detect S. aureus with low sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.