The disk resonator gyroscope is an attractive candidate for high-performance MEMS gyroscopes. This gyroscope consists of a sensor and readout electronics, and the characteristics of the sensor directly determine the performance. For the sensor, a high-quality factor and long decaying time constant are the most important characteristics required to achieve high performance. We report a disk resonator gyroscope with a measured quality factor of 510 k and decaying time constant of 74.9 s, which is a record for MEMS silicon disk resonator gyroscopes, to the best of our knowledge. To improve the quality factor of the DRG, the quality factor improvement mechanism is first analyzed, and based on this mechanism two stiffness-mass decoupled methods, i.e., spoke length distribution optimization and lumped mass configuration design, are proposed and demonstrated. A disk resonator gyroscope prototype is fabricated based on these design strategies, and the sensor itself shows an angle random walk as low as 0.001°/√h, demonstrating true potential to achieve navigation-grade performance. The gyroscope with readout electronics shows an angle random walk of 0.01°/√h and a bias instability of 0.04°/h at room temperature without compensation, revealing that the performance of the gyroscope is severely limited by the readout electronics, which should be further improved. We expect that the quality factor improvement methods can be used in the design of other MEMS gyroscopes and that the newly designed DRG can be further improved to achieve navigation-grade performances for high-end industrial, transportation, aerospace, and automotive applications.
The multiring disk resonator gyroscope (DRG) has been a candidate for high performance gyroscopes, however nowadays the finite element method (FEM) is the main method for its analysis due to its complex structure. In this paper we propose a new method to mathematically model the DRG for its vibrating modes and lumped parameters based on the component mode synthesis (CMS) method. Firstly, the natural frequencies and the associated mode shapes of the DRG are mathematically modeled and a comparison with the FEM results is conducted. It shows that the mode shapes of DRG obtained by FEM and mathematical modeling are identical and in the full ranges of geometrical parameters, natural frequency error of the simulation, and calculation results are limited in ±15%. It demonstrates the effectivity and feasibility of the mathematical modeling method. Then, based on the calculated natural frequencies and mode shapes, the lumped mass-spring model of the DRG and effects of geometry parameters on the lumped mass-spring parameters are investigated, which can be used on the design of the DRG. This mathematical modeling method can effectively improve the analyzing efficiency of the DRG and the method can also be used on the analysis of other complex multiring-type resonators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.