Image denoising is an important problem in many fields of image processing. Boosting algorithm attracts extensive attention in recent years, which provides a general framework by strengthening the original noisy image. In such framework, many classical existing denoising algorithms can improve the denoising performance. However, the boosting step is fixed or nonadaptive; i.e., the noise level in iteration steps is set to be a constant. In this work, we propose a noise level estimation algorithm by combining the overestimation and underestimation results. Based on this, we further propose an adaptive boosting algorithm that excludes intricate parameter configuration. Moreover, we prove the convergence of the proposed algorithm. Experimental results that are obtained in this paper demonstrate the effectiveness of the proposed adaptive boosting algorithm. In addition, compared with the classical boosting algorithm, the proposed algorithm can get better performance in terms of visual quality and peak signal-to-noise ratio (PSNR).
Machine learning (ML) has achieved remarkable success in a wide range of applications. In recent ML research, deep anomaly detection (AD) has been a hot topic with the aim of discriminating among anomalous data with deep neural networks (DNNs). Notably, image AD is one of the most representative tasks in current deep AD research. ML’s interaction with quantum computing is giving rise to a heated topic named quantum machine learning (QML), which enjoys great prospects according to recent academic research. This paper attempts to address the image AD problem in a deep manner with a novel QML solution. Specifically, we design a quantum-classical hybrid DNN (QHDNN) that aims to learn directly from normal raw images to train a normality model and then exclude images that do not conform to this model as anomalies during its inference. To enable the QHDNN to perform satisfactorily in deep image AD, we explore multiple quantum layer architectures and design a VQC-based QHDNN solution. Extensive experiments were conducted on commonly used benchmarks to test the proposed QML solution, whose results demonstrate the feasibility of addressing deep image AD with QML. Importantly, the experimental results show that our quantum-classical hybrid solution can even yield superior performance to that of its classical counterpart when they share the same number of learnable parameters.
According to the different characteristics that signal and noise exhibit during wavelet decomposition, a new denoising method based on the lifting scheme wavelet packet decomposition is presented. In this method, the SAR images are decomposed by using the best wavelet packet and the norm of each sub-band are calculated; signals and noise can be discriminated based on the norm and soft-threshold method, and the images can be denoised. Experiments show that the proposed algorithm has excellent performance in denoising SAR images, and can remove most noise of images with well-kept texture detail information. The calculating speed of the method is twice the speed of the general wavelet packet transform algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.