Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.
Graphene oxide (GO) is increasingly used in biomedical applications because it possesses not only the unique properties of graphene including large surface area and flexibility but also hydrophilicity and dispersibility in aqueous solutions. However, there are conflicting results on its biocompatibility and biosafety partially due to large variations in physicochemical properties of GO, and the role of these properties including lateral size in the biological or toxicological effects of GO is still unclear. In this study, we focused on the role of lateral size by preparing a panel of GO samples with differential lateral sizes using the same starting material. We found that, in comparison to its smaller counterpart, larger GO showed a stronger adsorption onto the plasma membrane with less phagocytosis, which elicited more robust interaction with toll-like receptors and more potent activation of NF-κB pathways. By contrast, smaller GO sheets were more likely taken up by cells. As a result, larger GO promoted greater M1 polarization, associated with enhanced production of inflammatory cytokines and recruitment of immune cells. The in vitro results correlated well with local and systemic inflammatory responses after GO administration into the abdominal cavity, lung, or bloodstream through the tail vein. Together, our study delineated the size-dependent M1 induction of macrophages and pro-inflammatory responses of GO in vitro and in vivo. Our data also unearthed the detailed mechanism underlying these effects: a size-dependent interaction between GO and the plasma membrane.
Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations.
Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms.
Interaction with the pulmonary surfactant film, being the first line of host defense, represents the initial bio-nano interaction in the lungs. Such interaction determines the fate of the inhaled nanoparticles and their potential therapeutic or toxicological effect. Despite considerable progress in optimizing physicochemical properties of nanoparticles for improved delivery and targeting, the mechanisms by which inhaled nanoparticles interact with the pulmonary surfactant film are still largely unknown. Here, using combined in vitro and in silico methods, we show how hydrophobicity and surface charge of nanoparticles differentially regulate the translocation and interaction with the pulmonary surfactant film. While hydrophilic nanoparticles generally translocate quickly across the pulmonary surfactant film, a significant portion of hydrophobic nanoparticles are trapped by the surfactant film and encapsulated in lipid protrusions upon film compression. Our results support a novel model of pulmonary surfactant lipoprotein corona associated with inhaled nanoparticles of different physicochemical properties. Our data suggest that the study of pulmonary nanotoxicology and nanoparticle-based pulmonary drug delivery should consider this lipoprotein corona.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.