Mesenchymal stem cells (MSCs) with multipotential differentiation capacity can differentiate into bone cells under specific conditions and can be used to treat osteonecrosis (ON) of the femoral head (ONFH) through cell transplantation. The current study aims to explore the role of bone marrow (BM) MSCs (BMSCs)-derived exosomes carrying microRNA-122-5p (miR-122-5p) in ONFH rabbit models. First, rabbit models with ONFH were established. ONFH-related miRNAs were screened using the Gene Expression Omnibus (GEO) database. A gain-of-function study was performed to investigate the effect of miR-122-5p on osteoblasts and BMSCs and effects of exosomes carrying miR-122-5p on ONFH. Co-culture experiments for osteoblasts and BMSCs were performed to examine the role of exosomal miR-122-5p in osteoblast proliferation and osteogenesis. The target relationship between miR-122-5p and Sprouty2 (SPRY2) was tested. MiR-122, significantly decreased in ONFH in the GSE89587 expression profile, was screened. MiR-122-5p negatively regulated SPRY2 and elevated the activity of receptor tyrosine kinase (RTK), thereby promoting the proliferation and differentiation of osteoblasts. In vivo experiments indicated that bone mineral density (BMD), trabecular bone volume (TBV), and mean trabecular plate thickness (MTPT) of femoral head were increased after over-expressing miR-122-5p in exosomes. Significant healing of necrotic femoral head was also observed. Exosomes carrying over-expressed miR-122-5p attenuated ONFH development by down-regulating SPRY2 via the RTK/Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Findings in the present study may provide miR-122-5p as a novel biomarker for ONFH treatment.
The quality control of skeletal muscle is a continuous requirement throughout the lifetime, although its functions and quality present as a declining trend during aging process. Dysfunctional or deficient autophagy and excessive apoptosis may contribute to the atrophy of senescent skeletal muscle. Spermidine, as a natural polyamine, can be involved in important cellular functions for lifespan extension and stress resistance in several model organisms through activating autophagy. Similarly, cellular autophagic responses to exercise have also been extensively investigated. In the present study, in order to confirm the mitigation or amelioration of skeletal muscle atrophy in aging rats through spermidine coupled with exercise intervention and explore corresponding mechanisms, the rat model with aging-related atrophy of skeletal muscle was established by intraperitoneal injection of D-galactose (D-gal) (200 mg/kgd), and model rats were subjected to the intervention with spermidine (5 mg/kgd) or swimming (60 min/d, 5 d/wk) or combination for 42 days. Spermidine coupled with exercise could attenuate D-gal-induced aging-related atrophy of skeletal muscle through induced autophagy and reduced apoptosis with characteristics of more autophagosomes, activated mitophagy, enhanced mitochondrial quality, alleviated cell shrinkage, and less swollen mitochondria under transmission scanning microscopic observation. Meanwhile, spermidine coupled with exercise could induce autophagy through activating AMPK-FOXO3a signal pathway with characterization of increased Beclin1 and LC3-II/LC3-I ratio, up-regulated anti-apoptotic Bcl-2, down-regulated pro-apoptotic Bax and caspase-3, as well as activated AMPK and FOXO3a. Therefore, spermidine combined with exercise can execute the prevention or treatment of D-gal-induced aging-related skeletal muscle atrophy through enhanced autophagy and reduced apoptosis mediated by AMPK-FOXO3a signal pathway.
BackgroundEndothelial cell (EC) released microvesicles (EMVs) can affect various target cells by transferring carried genetic information. Astrocytes are the main components of the blood brain barrier (BBB) structure in the brain and participate in regulating BBB integrity and blood flow. The interactions between ECs and astrocytes are essential for BBB integrity in homeostasis and pathological conditions. Here, we studied the effects of human brain microvascular ECs released EMVs on astrocyte functions. Additionally, we investigated the effects of EMVs treated astrocytes on regulating BBB function and cerebral ischemic damage.ResultsEMVs prepared from ECs cultured in normal condition (n-EMVs) or oxygen and glucose deprivation (OGD-EMVs) condition had diverse effects on astrocytes. The n-EMVs promoted, while the OGD-EMVs inhibited the proliferation of astrocytes via regulating PI3K/Akt pathway. Glial fibrillary acidic protein (GFAP) expression (marker of astrocyte activation) was up-regulated by n-EMVs, while down-regulated by OGD-EMVs. Meanwhile, n-EMVs inhibited but OGD-EMVs promoted the apoptosis of astrocytes accompanied by up/down-regulating the expression of Caspase-9 and Bcl-2. In the BBB model of ECs-astrocytes co-culture, the n-EMVs, conversely to OGD-EMVs, decreased the permeability of BBB accompanied with up-regulation of zonula occudens-1(ZO-1) and Claudin-5. In a transient cerebral ischemia mouse model, n-EMVs ameliorated, while OGD-EMVs aggravated, BBB disruption, local cerebral blood flow (CBF) reduction, infarct volume and neurological deficit score.ConclusionsOur data suggest that EMVs diversely modulate astrocyte functions, BBB integrity and CBF, and could serve as a novel therapeutic target for ischemic stroke.Electronic supplementary materialThe online version of this article (doi:10.1186/s13041-016-0243-1) contains supplementary material, which is available to authorized users.
Background/Aims: Stem cell-derived exosomes (EXs) offer protective effects on various cells via their carried microRNAs (miRs). Meanwhile, miR-210 has been shown to reduce mitochondrial reactive oxygen species (ROS) overproduction. In this study, we determined the potential effects of endothelial progenitor cell-derived EXs (EPC-EXs) on hypoxia/ reoxygenation (H/R) injured endothelial cells (ECs) and investigated whether these effects could be boosted by miR-210 loading. Methods: Human EPCs were used to generate EPCEXs, or transfected with scrambler control or miR-210 mimics to generate EPC-EXs sc and EPCEXs miR-210 . H/R-injured human ECs were used as a model for functional analysis of EXs on apoptosis, viability, ROS production and angiogenic ability (migration and tube formation) by flow cytometry, MTT, dihydroethidium and angiogenesis assay kits, respectively. For mechanism analysis, the mitochondrion morphology, membrane potential (MMP), ATP level and the expression of fission/fusion proteins (dynamin-related protein 1: drp1 and mitofusin-2: mfn2) were assessed by using JC-1 staining, ELISA and western blot, respectively. Results: 1) Transfection of miR-210 mimics into EPCs induced increase of miR-210 in EPC-EXs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.