The differential phase contrast CT detects the projection of refractive coefficient's derivative and uses the Hilbert filter for image reconstruction, which leads to the radical difference in its NPS and the advantage in noise in comparison to that of the conventional CT.
Abstract. Runtime (dynamic) model checking is a promising verification methodology for real-world threaded software because of its many features, the prominent ones being: (i) it avoids the need to extract a model and instead runs the actual code, and (ii) the precision of information available at run-time allows techniques such as dynamic partial order reduction (DPOR) [1] to dramatically cut down the number of interleavings examined. Unfortunately, DPOR does not have many implementations for real thread libraries such as POSIX Pthreads, and suffers from high computational overheads due to a stateless search that requires re-executions. In our previous work [2], we designed a runtime model checker, inspect, that overcomes the first of these drawbacks. Inspect has been shown capable of detecting data races, deadlocks and other incorrect API usages in real-world PThreads C programs. In this paper, we describe a distributed version of inspect, which implements an extended DPOR algorithm. Our two key contributions are: (i) a practical algorithm for distributed dynamic partial order reduction; (ii) the innovations that helped distributed inspect attain nearly linear (with respect to the number of CPUs) speedup on realistic examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.