We perform the potential analysis for the holographic Schwinger effect in a rotating deformed AdS black-hole background. We calculate the total potential of a quark-antiquark ($Q\bar{Q}$) pair in an external electric field and evaluate the critical electric field from Dirac-Born-Infeld (DBI) action. It is shown that the inclusion of angular velocity decreases the potential barrier thus enhancing the Schwinger effect, opposite to the effect of the confining scale. Moreover, by increasing angular velocity decreases the critical electric field above which the pairs are produced freely without any suppression. Furthermore, we conclude that producing $Q\bar{Q}$ pairs would be easier in rotating medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.