A novel waveguide step-twist integrated with a bandpass filter is presented in this Letter. The twist is composed of four equally rotated cavities to achieve polarisation rotation and filtering functionalities simultaneously. Such step-twist can achieve a significant reduction in size and weight. The design is demonstrated at Ka-band using waveguide technology and is fabricated using a stereolithography apparatus 3D printing together with metal plating. The device is designed to have a centre frequency of 32 GHz and a bandwidth of 1 GHz. The measured result shows good agreement with simulations, with a measured average insertion loss of 0.84 dB and a return loss better than 15 dB across the passband.
BackgroundThe switching exercise (e.g., Interval Training) has been a commonly used exercise protocol nowadays for the enhancement of exerciser’s cardiovascular fitness. The current difficulty for simulating human onset and offset exercise responses regarding the switching exercise is to ensure the continuity of the outputs during onset-offset switching, as well as to accommodate the exercise intensities at both onset and offset of exercise.MethodsTwenty-one untrained healthy subjects performed treadmill trials following both single switching exercise (e.g., single-cycle square wave protocol) and repetitive switching exercise (e.g., interval training protocol). During exercise, heart rate (HR) and oxygen uptake (VO 2) were monitored and recorded by a portable gas analyzer (K4b 2, Cosmed). An equivalent single-supply switching resistance-capacitor (RC) circuit model was proposed to accommodate the observed variations of the onset and offset dynamics. The single-cycle square wave protocol was utilized to investigate the respective dynamics at onset and offset of exercise with the aerobic zone of approximate 70% - 77% of HR max, and verify the adaption feature for the accommodation of different exercise strengths. The design of the interval training protocol was to verify the transient properties during onset-offset switching. A verification method including Root-mean-square-error (RMSE) and correlation coefficient, was introduced for comparisons between the measured data and model outputs.ResultsThe experimental results from single-cycle square wave exercises clearly confirm that the onset and offset characteristics for both HR and VO 2 are distinctly different. Based on the experimental data for both single and repetitive square wave exercise protocols, the proposed model was then presented to simulate the onset and offset exercise responses, which were well correlated indicating good agreement with observations.ConclusionsCompared with existing works, this model can accommodate the different exercise strengths at both onset and offset of exercise, while also depicting human onset and offset exercise responses, and guarantee the continuity of outputs during onset-offset switching. A unique adaption feature by allowing the time constant(Continued on next page) (Continued from previous page)and steady state gain to re-shift back to their original states, more closely mimics the different exercise strengths during normal daily exercise activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.