We studied the fluorescence enhancement of a dye-loaded polyphenylene dendrimer in a gap of 2-3 nm between a silver film and single silver particles with an average diameter of 80 nm. This sphere-on-plane geometry provides a controllable plasmonic resonator with a defined dye position. A strong fluorescence signal was seen from all particles, which was at least 1000 times stronger than the signal from the plane dye-coated metal surface. The fluorescence emission profile varied between the particles and showed light emission at higher energies than the free dye, which we assigned to hot luminescence. The maximum fluorescence emission peak shifted along with the scattering maximum of the plasmonic resonance. Two classes of scattering resonators could be distinguished. Up to a significant line-broadening, the response of the "sphere-on-plane"-like cases resembled the theoretical prediction for a perfect sphere-on-plane geometry. Resonators which deviate strongly from this ideal scenario were also found. Electron microscopy did not show significant differences between these two classes, suggesting that the variations in the optical response are due to nanoscale variations of shape and roughness in the gap region. The strong modifications of the dye emission spectrum suggested the presence of physical mechanisms at very small metal/dye separations, which are beyond a simple wavelength-dependent enhancement factor.
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by low platelet count which can cause fatal hemorrhage. ITP patients with antiplatelet glycoprotein (GP) Ib-IX autoantibodies appear refractory to conventional treatments, and the mechanism remains elusive. Here we show that the platelets undergo apoptosis in ITP patients with anti-GPIbα autoantibodies. Consistent with these findings, the anti-GPIbα monoclonal antibodies AN51 and SZ2 induce platelet apoptosis in vitro. We demonstrate that anti-GPIbα antibody binding activates Akt, which elicits platelet apoptosis through activation of phosphodiesterase (PDE3A) and PDE3A-mediated PKA inhibition. Genetic ablation or chemical inhibition of Akt or blocking of Akt signaling abolishes anti-GPIbα antibody-induced platelet apoptosis. We further demonstrate that the antibody-bound platelets are removed in vivo through an apoptosis-dependent manner. Phosphatidylserine (PS) exposure on apoptotic platelets results in phagocytosis of platelets by macrophages in the liver. Notably, inhibition or genetic ablation of Akt or Akt-regulated apoptotic signaling or blockage of PS exposure protects the platelets from clearance. Therefore, our findings reveal pathogenic mechanisms of ITP with anti-GPIbα autoantibodies and, more importantly, suggest therapeutic strategies for thrombocytopenia caused by autoantibodies or other pathogenic factors.
A ZnO-RGO-Au composite with bi-functional behavior was fabricated: it was employed both as a photocatalyst for degrading pollutants (Rhodamine 6G) and a SERS substrate for real-time monitoring of the degradation quantitatively.
Surface-enhanced Raman scattering intensity versus the separation of 100 nm diameter Au nanopost array on Si substrate was investigated. The relative Raman peak intensity per nanopost at different Raman modes rapidly decreases in a similar manner with the increase in the separation. This experimental result agrees well with the localized electric field enhancement calculation by three dimensional finite-difference time-domain method. The Raman peak intensity is mainly due to the edge enhancement of the nanopost through the coupling effect, and the nonenhancement contribution from the top of the nanopost also plays an important role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.