Event cameras are bio-inspired sensors that offer several advantages, such as low latency, high-speed and high dynamic range, to tackle challenging scenarios in computer vision. This paper presents a solution to the problem of 3D reconstruction from data captured by a stereo event-camera rig moving in a static scene, such as in the context of stereo Simultaneous Localization and Mapping. The proposed method consists of the optimization of an energy function designed to exploit small-baseline spatio-temporal consistency of events triggered across both stereo image planes. To improve the density of the reconstruction and to reduce the uncertainty of the estimation, a probabilistic depth-fusion strategy is also developed. The resulting method has no special requirements on either the motion of the stereo event-camera rig or on prior knowledge about the scene. Experiments demonstrate our method can deal with both texture-rich scenes as well as sparse scenes, outperforming state-of-the-art stereo methods based on event data image representations.
Vehicle re-identification (re-ID) is an area that has received far less attention in the computer vision community than the prevalent person re-ID. Possible reasons for this slow progress are the lack of appropriate research data and the special 3D structure of a vehicle. Previous works have generally focused on some specific views (e.g., front); but, these methods are less effective in realistic scenarios, where vehicles usually appear in arbitrary views to cameras. In this paper, we focus on the uncertainty of vehicle viewpoint in re-ID, proposing two end-to-end deep architectures: the Spatially Concatenated ConvNet and convolutional neural network (CNN)-LSTM bi-directional loop. Our models exploit the great advantages of the CNN and long short-term memory (LSTM) to learn transformations across different viewpoints of vehicles. Thus, a multi-view vehicle representation containing all viewpoints' information can be inferred from the only one input view, and then used for learning to measure distance. To verify our models, we also introduce a Toy Car RE-ID data set with images from multiple viewpoints of 200 vehicles. We evaluate our proposed methods on the Toy Car RE-ID data set and the public Multi-View Car, VehicleID, and VeRi data sets. Experimental results illustrate that our models achieve consistent improvements over the state-of-the-art vehicle re-ID approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.