Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to improve clinical outcomes through more selective targeting of pathways and networks within the brain. However, increasing the number of electrodes on clinical DBS leads by replacing conventional cylindrical shell electrodes with radially distributed electrodes raises practical design and stimulation programming challenges. We used computational modeling to investigate: (1) how the number of radial electrodes impact the ability to steer, shift, and sculpt a region of neural activation (RoA), and (2) which RoA features are best used in combination with machine learning classifiers to predict programming settings to target a particular area near the lead. Stimulation configurations were modeled using 27 lead designs with one to nine radially distributed electrodes. The computational modeling framework consisted of a three-dimensional finite element tissue conductance model in combination with a multi-compartment biophysical axon model. For each lead design, two-dimensional threshold-dependent RoAs were calculated from the computational modeling results. The models showed more radial electrodes enabled finer resolution RoA steering; however, stimulation amplitude, and therefore spatial extent of the RoA, was limited by charge injection and charge storage capacity constraints due to the small electrode surface area for leads with more than four radially distributed electrodes. RoA shifting resolution was improved by the addition of radial electrodes when using uniform multi-cathode stimulation, but non-uniform multi-cathode stimulation produced equivalent or better resolution shifting without increasing the number of radial electrodes. Robust machine learning classification of 15 monopolar stimulation configurations was achieved using as few as three geometric features describing a RoA. The results of this study indicate that, for a clinical-scale DBS lead, more than four radial electrodes minimally improved in the ability to steer, shift, and sculpt axonal activation around a DBS lead and a simple feature set consisting of the RoA center of mass and orientation enabled robust machine learning classification. These results provide important design constraints for future development of high-density DBS arrays.
Precise neurosurgical targeting of electrode arrays within the brain is essential to the successful treatment of a range of brain disorders with deep brain stimulation (DBS) therapy. Here, we describe a set of computational tools to generate in vivo, subject-specific atlases of individual thalamic nuclei thus improving the ability to visualize thalamic targets for preclinical DBS applications on a subject-specific basis. A sequential nonlinear atlas warping technique and a Bayesian estimation technique for probabilistic crossing fiber tractography were applied to high field (7T) susceptibility-weighted and diffusion-weighted imaging, respectively, in seven rhesus macaques. Image contrast, including contrast within thalamus from the susceptibility-weighted images, informed the atlas warping process and guided the seed point placement for fiber tractography. The susceptibility-weighted imaging resulted in relative hyperintensity of the intralaminar nuclei and relative hypointensity in the medial dorsal nucleus, pulvinar, and the medial/ventral border of the ventral posterior nuclei, providing context to demarcate borders of the ventral nuclei of thalamus, which are often targeted for DBS applications. Additionally, ascending fiber tractography of the medial lemniscus, superior cerebellar peduncle, and pallidofugal pathways into thalamus provided structural demarcation of the ventral nuclei of thalamus. The thalamic substructure boundaries were validated through in vivo electrophysiological recordings and post-mortem blockface tissue sectioning. Together, these imaging tools for visualizing and segmenting thalamus have the potential to improve the neurosurgical targeting of DBS implants and enhance the selection of stimulation settings through more accurate computational models of DBS.
Structural brain imaging provides a critical framework for performing stereotactic and intraoperative MRI-guided surgical procedures, with procedural efficacy often dependent upon visualization of the target with which to operate. Here, we describe tools for in vivo, subject-specific visualization and demarcation of regions within the brainstem. High-field 7T susceptibility-weighted imaging and diffusion-weighted imaging of the brain were collected using a customized head coil from eight rhesus macaques. Fiber tracts including the superior cerebellar peduncle, medial lemniscus, and lateral lemniscus were identified using high-resolution probabilistic diffusion tractography, which resulted in three-dimensional fiber tract reconstructions that were comparable to those extracted from sequential application of a two-dimensional nonlinear brain atlas warping algorithm. In the susceptibility-weighted imaging, white matter tracts within the brainstem were also identified as hypointense regions, and the degree of hypointensity was age-dependent. This combination of imaging modalities also enabled identifying the location and extent of several brainstem nuclei, including the periaqueductal gray, pedunculopontine nucleus, and inferior colliculus. These clinically-relevant high-field imaging approaches have potential to enable more accurate and comprehensive subject-specific visualization of the brainstem and to ultimately improve patient-specific neurosurgical targeting procedures, including deep brain stimulation lead implantation.
Background Computational models of deep brain stimulation (DBS) have played a key role in understanding its physiological mechanisms. By estimating a volume of tissue directly modulated by DBS, one can relate the neuronal pathways within those volumes to the therapeutic efficacy of a particular DBS setting. New Method A spherical statistical framework is described to quantify and determine salient features of such morphologies using visualization techniques, empirical shape analysis, and formal hypothesis testing. This framework is shown using a 3D model of thalamocortical neurons surrounding a radially-segmented DBS array. Results We show that neuronal population volumes modulated by various DBS electrode configurations can be characterized by parametric distribution models, such as Kent and Watson girdle models. Distribution parameters were found to change with stimulus settings, including amplitude and radial distance from the DBS array. Increasing stimulation amplitude through a single electrode resulted in more diffuse neuronal activation and increased rotational symmetry about the mean direction of the activated population. When stimulation amplitude was held constant, the activated neuronal population distribution was more concentrated with distance from the DBS array and was also more rotationally asymmetric. We also show how data representation (e.g. stimulus-entrained cell body vs. axon node) can significantly alter model distribution shape. Comparison to Existing Methods This statistical framework provides a quantitative method to analyze the spatial morphologies of DBS-induced effects on neuronal activity. Conclusions The application of spherical statistics to assess spatial distributions of neuronal activity has potential usefulness for numerous other recording, labeling, and stimulation modalities.
A considerable number of studies have described the potential neural mechanism of deception, but most deception studies have relied upon deception from experimental supervisor instruction. Experimental control (participants follow instructions to deceive without any risk) means that the deception occurs in a way that does not come close to the real deception. In the current study, a neural imaging experiment on deception closer to the real deception was conducted. Event-related potential (ERP) and event-related spectral perturbation (ERSP) techniques were used to explore the neural mechanism of deception. The results showed that deceptive response evoked larger medial-frontal negativity (MFN) and smaller response-locked positivity (RLP) than truthful response. We interpret these findings to indicate that conflict detection and emotional processing are associated with deception. In addition, magnitudes of alpha and beta oscillations after the deceptive response were significantly smaller than those after the truthful response, demonstrating that deception is associated with neural oscillations reflecting conflict adjustment. The results comprehensively characterized the physiological properties of the brain oscillations elicited by a deceptive response and provided a theoretical foundation for detection in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.