Event-based vision sensors, such as the Dynamic Vision Sensor (DVS), are ideally suited for real-time motion analysis. The unique properties encompassed in the readings of such sensors provide high temporal resolution, superior sensitivity to light and low latency. These properties provide the grounds to estimate motion efficiently and reliably in the most sophisticated scenarios, but these advantages come at a price -modern event-based vision sensors have extremely low resolution, produce a lot of noise and require the development of novel algorithms to handle the asynchronous event stream.This paper presents a new, efficient approach to object tracking with asynchronous cameras. We present a novel event stream representation which enables us to utilize information about the dynamic (temporal) component of the event stream. The 3D geometry of the event stream is approximated with a parametric model to motion-compensate for the camera (without feature tracking or explicit optical flow computation), and then moving objects that don't conform to the model are detected in an iterative process. We demonstrate our framework on the task of independent motion detection and tracking, where we use the temporal model inconsistencies to locate differently moving objects in challenging situations of very fast motion.
SUPPLEMENTARY MATERIALThe supplementary video materials and datasets will be made available at
Despite the recent successes in robotics, artificial intelligence and computer vision, a complete artificial agent necessarily must include active perception. A multitude of ideas and methods for how to accomplish this have already appeared in the past, their broader utility perhaps impeded by insufficient computational power or costly hardware. The history of these ideas, perhaps selective due to our perspectives, is presented with the goal of organizing the past literature and highlighting the seminal contributions. We argue that those contributions are as relevant today as they were decades ago and, with the state of modern computational tools, are poised to find new life in the robotic perception systems of the next decade.
Non-verbal communication enables efficient transfer of information among people. In this context, classic orchestras are a remarkable instance of interaction and communication aimed at a common aesthetic goal: musicians train for years in order to acquire and share a non-linguistic framework for sensorimotor communication. To this end, we recorded violinists' and conductors' movement kinematics during execution of Mozart pieces, searching for causal relationships among musicians by using the Granger Causality method (GC). We show that the increase of conductor-to-musicians influence, together with the reduction of musician-to-musician coordination (an index of successful leadership) goes in parallel with quality of execution, as assessed by musical experts' judgments. Rigorous quantification of sensorimotor communication efficacy has always been complicated and affected by rather vague qualitative methodologies. Here we propose that the analysis of motor behavior provides a potentially interesting tool to approach the rather intangible concept of aesthetic quality of music and visual communication efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.