Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder causing benign tumors in the brain and other vital organs. The genes implicated in disease development are TSC1 and TSC2. Here, we have performed mutational analysis followed by a genotype-phenotype correlation study based on the clinical characteristics of the affected individuals. Twenty unrelated probands or families from Greece have been analyzed, of whom 13 had definite TSC, whereas another 7 had a possible TSC diagnosis. Using direct sequencing, we have identified pathogenic mutations in 13 patients/families (6 in TSC1 and 7 in TSC2), 5 of which were novel. The mutation identification rate for patients with definite TSC was 85%, but only 29% for the ones with a possible TSC diagnosis. Multiplex ligation-dependent probe amplification (MLPA) did not reveal any genomic rearrangements in TSC1 and TSC2 in the samples with no mutations identified. In general, TSC2 disease was more severe than TSC1, with more subependymal giant cell astrocytomas and angiomyolipomas, higher incidence of pharmacoresistant epileptic seizures, and more severe neuropsychiatric disorders. To our knowledge, this is the first comprehensive TSC1 and TSC2 mutational analysis carried out in TSC patients in Greece.
A major hallmark of the terminal stages of apoptosis is the internucleosomal DNA fragmentation. The endonuclease responsible for this type of DNA degradation is the DNA fragmentation factor (DFF). DFF is a complex of the endonuclease DFF40 and its chaperone/inhibitor, DFF45. In vitro work has shown that histone H1 and HMGB1/2 recruit/target DFF40 to the internucleosomal linker regions of chromatin and that histone H1 directly interacts with DFF40 conferring DNA binding ability and enhancing its nuclease activity. The histone H1 family is comprised of many subtypes, which recent work has shown may have distinct roles in chromatin function. Thus we studied the binding association of DFF40 with specific H1 subtypes and whether these binding associations are altered after the induction of apoptosis in an in vivo cellular context. The apoptotic agent used in this study is the histone deacetylase inhibitor, trichostatin A (TSA). We separated the insoluble chromatin-enriched fraction from the soluble nuclear fraction of the NB4 leukemic cell line. Using MNase digestion, we provide evidence which strongly suggests that the heterodimer, DFF40-DFF45, is localized to the chromatin fraction under apoptotic as well as non-apoptotic conditions. Moreover, we present results that show that DFF40 interacts with the all H1 subtypes used in this study, but preferentially interacts with specific H1 subtypes after the induction of apoptosis by TSA. These results illustrate for the first time the association of DFF40 with individual H1 subtypes, under a specific apoptotic stimulus in an in vivo cellular context.
Nuclei from Plodia interpunctella larvae contain four major proteins, which are extracted by 5% perchloric acid and 0.35 M NaCl. The proteins have been designated PL1, PL2, PL3, and PL4. The amino acid analyses of these proteins show that they have high proportions of acidic and basic amino acid residues, a property characteristic of the high mobility group (HMG) proteins isolated from vertebrate tissues. Immunological characterication of these proteins clearly shows that PL1, PL2, and PL4 are more closely related to HMG1 dipteran proteins, while PL3 is more closely related to HMG1 dipteran proteins. The possible relatedness of these proteins to HMG proteins is discussed.
Nuclei from Bactrocera oleae and Ceratitis capitata larvae contain a major protein that shares most of the characteristics of vertebrate high mobility group (HMG) proteins. Proteins are extracted from nuclei with 0.35 M NaCl, are soluble in 5% perchloric acid, are relatively small (molecular weight in the range of 10-16 kDa), and have both a high basic and a high acidic amino acid content. The amino acid constitution of these proteins is similar to that of the HMGB protein family of vertebrates. The proteins cross-react with antibodies raised against the HMGD chromosomal protein of Drosophila melanogaster. The possible relatedness of these proteins to high mobility group proteins is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.