COVID-19 is likely to pose a significant threat to healthcare, especially for disadvantaged populations due to the inadequate condition of public health services with people's lack of financial ways to obtain healthcare. The primary intention of such research was to investigate trend analysis for total daily confirmed cases with new corona virus (i.e., COVID-19) in the countries of Africa and Asia. The study utilized the daily recorded time series observed for two weeks (52 observations) in which the data is obtained from the world health organization (WHO) and world meter website. Univariate ARIMA models were employed. STATA 14.2 and Minitab 14 statistical software were used for the analysis at 5% significance level for testing hypothesis. Throughout time frame studied, because all four series are non-stationary at level, they became static after the first variation. The result revealed the appropriate time series model (ARIMA) for Ethiopia, Pakistan, India, and Nigeria were Moving Average order 2, ARIMA(1, 1, 1), ARIMA(2, 1, 1), and ARIMA (1, 1, 2), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.