Objective:
This study aimed to investigate the feasibility of utilizing CytoSorter® system to detect circulating tumor cells (CTCs) and clinical value of CTCs in patients with locally advanced head and neck squamous cell carcinoma (LAHNSCC).
Methods:
31 patients with LAHNSCC, 12 healthy volunteers, and 6 patients with benign tumor serving as controls were enrolled in this study. CTCs were enriched with the CytoSorter®, a microfluidic based immune capture system. CTC detection was performed before and after induction chemotherapy, as well as after surgery and/or radiotherapy. Correlations between CTC enumerations at different time points and survival outcome and recurrence risk were evaluated. The correlation between CTCs and clinicopathological characteristics was appraised. Follow-up of patients continued until March 2019.
Results:
While CTCs were not found in the controls, they were detected in 24 of 31 LAHNSCC patients. CTCs could be used to distinguish diseased people from the healthy (
P
<0.0001). CTCs were statistically associated with patient age (
P
=0.037, >60 years old vs<60 years old) and lymph node metastasis (
P
= 0.034, N0N1 VS N2N3). Most patients had significantly reduced CTCs at the end of treatment. Patients with partial remission of tumor after induction therapy had more CTCs than those with complete remission of tumor. Patients with higher CTCs counts prior to treatment had higher chance of developing local recurrence of tumor after treatment (
P
=0.0187).
Conclusion:
CTCs were successfully isolated in LAHNSCC patients using CytoSorter® system with better sensibility. CTCs can be used to differentiate LAHNSCC patients from those with benign HNSCC tumor or healthy volunteers, and as markers to monitor patient’s response to treatment and predict the local tumor recurrence after treatment. CTC detection at baseline has the greatest prognostic potency in LAHNSCC patients.
Background
Identification of master regulators (MRs) using transcriptome data in cervical cancer (CC) could help us to develop biomarkers and find novel drug targets to fight this disease.
Methods
We performed differential expression (DE) analyses of public microarray and RNA-seq transcriptome data of CC and normal cervical tissues (N). Virtual Inference of Protein activity by Enriched Regulon analysis (VIPER) was used to convert the DE outcomes to differential activity (DA) signature for MRs. Synergy analysis was conducted to study synergistic effect of MR-pairs. TCGA and microarray data were used to test the association of expression of a MR and a clinical feature or a molecular feature (e.g. somatic mutations). Various bioinformatic tools/websites (DAVID, GEPIA2, Oncomine, cBioPortal) were used to analyze the expression of the top MRs and their regulons.
Results
Ten DE and 10 DA signatures were generated for CC. Two MRs, DNA topoisomerase II alpha (TOP2A) and centromere protein F (CENPF) were found to be up-regulated, activated and synergistic in CC compared to N across the 10 datasets. The two MRs activate a common set of genes (regulons) with functions in cell cycle, chromosome, DNA damage etc. Higher expression of CENPF was associated with metastasis. High expression of both MRs is associated with somatic mutation of a set of genes including tumor suppressors (TP53, MSH2, RB1) and genes involved in cancer pathways, cell cycle, DNA damage and repair. The magnitude of up-regulation and the absolute expression level of both MRs in CC are significantly higher compared to many other cancer types.
Conclusion
TOP2A and CENPF are a synergistic pair of MRs that are overexpressed and activated in CC. Their high expression is correlated with some prognosis features (e.g. metastasis) and molecular features (e.g. somatic mutations) and distinctly high in CC vs. many other cancer types. They may be good biomarkers and anticancer drug targets for CC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.