Objective: This study focused on the ADHD classification through functional connectivity (FC) analysis. Method: An ADHD classification method was proposed with subspace clustering and binary hypothesis testing, wherein partial information of test data was adopted for training. By hypothesizing the binary label (ADHD or control) for the test data, two feature sets of training FC data were generated during the feature selection procedure that employed both training and test data. Then, a multi-affinity subspace clustering approach was performed to obtain the corresponding subspace-projected feature sets. With the energy comparison of projected feature sets, we finally identified ADHD individuals for the test data. Results: Our method outperformed several state-of-the-art methods with the above 90% average identification accuracy. By the discriminative FC contribution analysis, it also proved the reliability of our method. Conclusion: Results demonstrate the remarkable classification performance of our method and reveal some useful brain circuits to identify ADHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.