Methionine (Met) is an essential and multifunctional nutrient in vertebrate diets. It is a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation, which has an important role in the inflammatory responses. However, whether Met exerts anti-inflammatory effects by altering DNA methylation in macrophages is unclear. In this study, Met was found to diminish the activation of the mitogen-activated protein kinase signaling pathway; decrease the production of tumor necrosis factor-α, interleukin-6, and interferon-β; and enhance the levels of intracellular SAM after lipopolysaccharide (LPS) treatment in macrophages. Similarly, SAM inhibited the LPS-induced inflammatory response, consistent with the result of Met treatment. Met-treated macrophages displayed increased global DNA methylation. The DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine partially blocked the anti-inflammatory effects of Met in macrophages, suggesting a mechanism involving DNA methylation. Collectively, the results indicated that Met inhibits the LPS-induced inflammatory response by altering DNA methylation in RAW 264.7 macrophages. The findings provide new insights into the interplay between nutrition and immunology, and highlight the regulatory effects of amino acids on the host immune system.
Intestinal microbiota is a critical determinant of growth and risk of metabolic diseases. Our previous studies showed that the locus rs16775833 within the DMRT1 gene is significantly associated with variation in the population structure of the gut microbiota, which is involved in determining the BW of the chicken. To assess the accuracy of correlation of rs16775833 located in the DMRT1 gene on microbial population and BW in birds, 2 genotypes GG and TT in the rs16775833 were identified in Chinese Yellow broiler breeders. We found that BW in the TT genotype group was significantly higher than in the GG genotype group at 7 and 13 wk of age in 777 female chickens. A full-length 16S rRNA sequencing approach was used to further evaluate the fecal bacterial composition of female broilers in 11 TT genotype chickens with high weight ( HW-TT ) and 11 GG genotype chickens with low weight ( LW-GG ) at 91 D of age. Partial least squares discriminant analysis revealed that the microbiota of the HW-TT and LW-GG females were clearly separated into 2 clusters. Furthermore, we identified 13 significantly different ( P < 0.05) microbes at the genus level and 17 significantly different ( P < 0.05) species between the HW-TT and LW-GG groups. Our data show that rs16775833 can modulate the microbial community structure and is associated with the BW of birds. To our knowledge, this is the first time that DMRT1 has been identified as a specific host factor, which is not only involved in sex determination but also has an effect on microbial function that might regulate animal growth.
ABSTRACT. The influence of warm day and cool night conditions on induction of spikes in Phalaenopsis orchids has been studied with respect to photosynthetic efficiency, metabolic cycles and physiology. However, molecular events involved in spike emergence induced by warm day and cool night conditions are not clearly understood. We examined gene expression induced by warm day and cool night conditions in the Phalaenopsis hybrid Fortune Saltzman through suppression subtractive hybridization, which allowed identification of flowering-related genes in warm day and cool night conditions in spikes and leaves at vegetative phase grown under warm daily temperatures. In total, 450 presumably regulated expressed sequence tags (ESTs) were identified and classified into functional categories, including metabolism, development, transcription factor, signal transduction, transportation, cell defense, and stress. Furthermore, database comparisons revealed a notable number of Phalaenopsis hybrid Fortune Saltzman ESTs that matched genes with unknown function. The expression profiles of 24 genes (from different functional categories) have been confirmed by quantitative real-time PCR in induced spikes and juvenile apical leaves. The results of the real-time PCR showed that, compared to the vegetative apical leaves, the transcripts of genes encoding flowering locus T, AP1, AP2, KNOX1, knotted1-like homeobox protein, R2R3-like MYB, adenosine kinase 2, S-adenosylmethionine synthetase, dihydroflavonol 4-reductase, and naringenin 3-dioxygenase accumulated significantly higher levels, and genes encoding FCA, retrotransposon protein Ty3 and C3HC4-type RING finger protein accumulated remarkably lower levels in spikes of early developmental stages. These results suggested that the genes of two expression changing trends may play positive and negative roles in the early floral transition of Phalaenopsis orchids. In conclusion, spikes induced by warm day and cool night conditions were complex in Phalaenopsis orchids; nevertheless, several molecular flowering pathway-related genes were found. The acquired data form the basis for a molecular understanding of spike induction by warm day and cool night conditions in Phalaenopsis orchids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.